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Preface

This work is concerned with the study of local and global properties

of spaces of prefe rences and their applications to general equilibrium ,

utility and demand analysis. Differential topology and global analysi s

tools are used to study the mathe matica l aspe cts of these proble ms, a dding

further results and techniques to an approach introduced in mathematical

economics by Gera rd Debreu in 1970.

Spaces of smooth, not necessaril y convex or increasing, prefere nces

are shown here to be repre senta ble as differentiable Hu bert manifold s.

These structur es on spaces of preferenc es are then used to extend major

• results on the regularity of equilib ria , based on Sard ’. theorem and

Abraham -Thom tra nsversality theory, to economie s where agent . are

describe d by their prefe rences and endowme nts. Certain topological

propertie s of these manifolds of preferences are studied. Applications

are also given to the study of the utilities and the demands of the agent.

in relation to the underlying prefe rences. The result. point to extensions

and indicate new branches of research of both economic and mathematical

interes t ; these are writt en as suggestio n, or conjectures In the text.

Furthe r possible applica tions of the result s to th. study of regularity

prop erties of economic aggregate s are also indicated.
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satto ns and for careful reading of tb. manuscript. Ger ard D.breu super-

vised th. research and provided tnt.U.ctual advice and orientat ion as

Chairman of tb. Thesis Ccnmiitt.s. Kenneth Arrow provide d .~ç~port

f 
_________

• • 
••



at his Project on Efficiency of Decision Making in Economic System s

at Ha r vard University , gave intellectual Input and advice , and positive

reinforcement throughout the resear ch. I am also grateful to Warren

Ambrose , iean-Mtchel Gra ndmont, Jerro ld Marsde n, Richard Palats ,

irving Segal , Steve Smale , Shiomo Ste rnb erg and Mich~ële Verg ue for

helpful discussions and suggest ions , and to Daniel McFadden who was

a member of the Thes is Committee.

Support from NSF Grant OS 18174 and the U rban Institute,

Washing ton, D. C . is gratefully acknowledged. Renate D Arca ngelo

and Kar l Young contributed their great abilities as typists and

~ i1Lmlted patience with revisions.

I am also gritei~~ ~~ my son Eduar do-Jos~ ChichUnisky for

providing support and sympathy when it wa~ ftee~~~!

I

I
4 

•

~

• •

- -.- — — - - —

—



Table of Contents

Preface

Chapter 1: INTRODUCTION 1

a. Motivation of the Results and Discussion of
• Applications 1

b. Summary of the Results 8

Chspt.r 2: MANIFOLDS OF PREFERENCES 10

a. Introd uction 10

b. An Approach to the Study of Smooth Preferences 11

- c. Construction of Hu bert Ma nifold Structu res for
• Spaces of Preferences 19

• 4. Ma nifolds of Foliations and other Submanifold. of
Pref erence s 31

• e. More General Spaces of Foliations of the
Commodity Space 35

• Chapter 3: PREFERENCES, UTILITIES AND DEMANDS 40

a. Introduction 40
• 

• b. Prope rties of Manifo lds of Preferences 41

• c. Prop erties of Utilitie s 44

d. Prop erties of Demand . 5Z

Chapter 4: PREFE RENC ES AND EQUILIBRIA 58

a. Introduction 58

b. G.n.riclty of Regular Econom ies 61

c. Existence of Equilibria and Necessary Conditions
for Local Uniqu.n.ss and Stability 72

Referen ces 76

APPENDIX: Definitions and Tools from Global Analysis and
Differential Topology 79

_

~~~~~~~~ 

- 
--

~~
-

--



Chapter 1

INTRODUCTION

a. Motivation of the Results and Discussion of Applications

Preferences are primitive concept. of the theory of economic

behavior. An economic agent is usually represente d by a preference

relation and certain initial data , such as a vector of endowments of

commodities , wealth, production possibilities set., etc. Thus, spaces

of economic agents are usually represented as products of spaces of

• preferences and subsets of Euclidean spaces. As the theory of econo-

mies with many agents grew , more and more structure was required

on the spaces of economic agents in order to formalize and study

certain concept. of the theory. For instance , in order to investigate

continuity of the equilibria and the core with respect to the agent ’s

characteristics , a topological (metric) structure was introduced on

space. of preferences In Kannai (241, Debrau (b land Hildenbrand [21].

• For the study of certain economic aggregates, such as the aggregate

or mean demand, spaces of preferences became metric measurable

• spaces [10], (21) and an economy was represented by a measure which

described a distri bution of its agent ’s characteristic..

More recentl y, further investigation of certain global prop erties

of equilibria , such as finiteness continuity and stability, has developed

• 
by the use of tools of diff.rential topology, starting from the leading

article by D.bre u [ 12). In Debreu ’s theorem an economy is represented

by the C1 demand functions of the agents , satisfying a boundary

condition; the main result i.e that for almost all initial allocation of

I
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commodities of the n agents, there are only a finite number of equilibria

which depend continuously on the allocations . Such an economy is also

called 
~~~~~~~ 

In Smale [38], the results of Debreu are extended: it

is proven that for almost .11 initial allocations and utility functions of

the agents, the “extended” equilibria (which include and may not

coincide in general with the classical equilibria) are locally unique

• and stabls.

The results of [12] and 1 381 rely on differential topology techniques ;

in [12] basically the theorem of SaM, and in [ 38] Abraham-Thom ’s

transv.rsality theorem and other infinite dimensional differential

• topology techniques. In order to be able to use these types of techniques

one needs differentiable structures on the spaces one works on.
• Smale ’s results extended those of Debreu, describing or parametrizing

an economy by the utilities of the agents as well as by their initial

endowments of commodities as in [12]. Utility functions are elements

of linear function spaces, which have enough structure to work on, in

particular , to apply transversality theory.

However , utilities are considered unsatisfactory as primitive

concepts [13], and the results of [38) cannot be translated from spaces of

utilities to spaces of preferences unless more structure for spaces of

preferences is given. This is also discussed in [16]. Furthermore , as

has been known in economic theory for a long time, the whole analysis of

• equilibria and demand behavior ultimately rests on the indifference

• surfaces of the preferences which ar e the level surfaces of the utility

functions. A. pointed out , for instance, by Smale [38] the utility functions *
are mostly used as a convenient description of these indifference surfaces.

So it seems also methodologically mor. adequate to work on spaces of

——  — - -—-— _ _ _ _ _
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preferences directly. Since Abraha m-Thom ’s tran eversality theore m

is available on infinite dimensional manifolds which admit some

representation into a function space [ 1], if such a representation is

obtained for spaces of preferences , one can take advantage of these

• techniques and extend the results of [ 121 and (38] for economies where

the agents are identified by smooth (not necessarily convex) preferences

and initial endowments. In this work, a manifold structure for spaces

• of preferences is constructed. We show that under certain conditions

• spaces of preferences can be represented by certain spaces of foliations

of the commodity space; the leaves of the foliation are the indifference

surfaces of the preferences. We give here a Hu bert manifold structure

to these spaces of foliations , with the topology induced by Sobolev ’s

• norms. Sobolev’s inequality theorem, which relates the Sobolev’s norms

to the norms, is then used to provide the representation

referred to above, and then we obtain the desired extension of the results

• of regularity of equilibria of (12] and (38] for economies where agent.

• are identified by preferences and initial endowments.

We shall now briefly discuss possible further applications of the

manifold structures of preferences constructed here, to problems of

regularity of economic aggregates. Differential topology tools have also

proven useful for the study of regularity properties of economic aggregate..

An economy is in this context usually represented by a measure on the

space of economic agents Indicating a distribution of the agent’s

characteristics (21]. (Such as preferences , endowments , etc. ). For

th. study of aggregate properties of the economy It helps to have

an adequat, structure on the space of agents in order to be able to use

well-studied measure theories. For instance, In [36], the admis.thle

r• ‘.—
~~~••_ 
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spaces of preferences are restricted to have finite dimens ional

manifold structures , and under these conditions , differential

topology techniques and Lebesgue—like measures on spaces of

prefe rences are used to obtain results of continuity of

the mean or aggregate demand. Lebesgue-like measures , which can be

defined on locally Euclidean spaces such as finite dimensional manifolds ,

provide “suitable diffused” distributions on spaces of economic agents;

in general metric spaces there exist no counterpart for these measures.

As pointed out by Debreu [13] a natural next step would be to endow

spaces of preferences with an algebraic structure. Such an (local or

global) algebraic structure is obtained when the spaces of preferences

are given manifold structures. As discussed in [13] these structures

should be of help in the study of specific classes of measures on spaces

of agents and of certain desirable prop erties of economic aggregation

obtained by the use of such measures as , for examp le , the smoothing

effect of the aggregation of individual demands with “suitabl y diffused”

measures. The smoothness of the excess demand function of an economy

is an important property. Since the equilibria are the zeroes of the

excess demand function, its smoothness allows to use differential

topology tools for the study of properties of the set of equilibria of the f
• economy. For a summary of the existing literature on economies with

smooth excess demands, see Debreu [14).

Anothe r desirable property of economic aggregates that could be

studied if one has sufficient structure on the spaces of economic

agents, or preferences , Is the uniqueness of equilibria , that can be

obtained by aggregation of ~~~~~~~~~ concentrated” measures. This

latter point refer • to the following intuitive idea: In a many agent economy

_ _ _ _ _ _  
I
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if all agents have identical endowments and identical preferences, under

certain conditions , the economy will exhibit a unique equilibrium [ 3 ].

But such an economy can be thought of as one described by a measure

on the spaces of endowments and preferences which is completely

• concentrated on (or supported by) one point . (We shall denote this

measure ~~~~~~~~ 
If there is to be any continuity of the properties of the

equilibria with respect to the characteristics of the economy (the economy

in these cases is usually described by a measure on the spaces of

preferences and of endowments ) , then if an economy (a measure) is

“sufficiently close” to the economy represented by i
~~~
, one can expect

that the property of uniqueness of the equilibria will be preserved. For

the study of these continuity properties of the manifold of equilibria as

depending on the parameter or measure that represents the economy,

It Is of course, useful to have as much structure on the underlying

apace as possible, In orde r to use limit or convergence theorems, etc.

If the economies , for instance, are described by measures which are

absolutely continuous with respect to a certain basic measure (say a

Lebesgue measure If the underlying space has a locally Eudlidean

structure), and thus can be represented by certain classes of functions

• one can, for Instance, actually try to further study the “bifurcation”

• values (of these functions ) that represent the economies at which the

corresponding set of equilibria change. from being a one point set to

a many point set , with corresponding implications for the stability of

the economy.

To the above motivations for the construction of diffe rent iable

manifold structures for space. of preferences we can also add another

provided by recent results on major ity voting or aggregation rules for

- -—5———— ____
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which it is required to have an underlying algebraic structure of the

spaces of preferences similar to the one we construct here, see

Jean-Michel Gra ndmont [191.

It is of interest that one can actually endow spaces of preferences

with the differentiable manifold structures needed by the recent advances

of economic theory. However, as we shall see in what follows, these

manifolds are by nature infinite dimensional. This restricts the

validity of results such as those of [40] which are obtained assuming

finite dimensional differentiable manifold structures on the admissible

spaces of preferences. In general, this infinite dimensionality precludes

the use of finite dimensional differential topology techniques on spaces of

preferences, but may open up a whole new range of applications of infinite

dimensional differential topology and global analysis tools which have

been developed in recent years.

From the point of view of measure theory, Lebesgue-like measures

would not anymore be available for these spaces of preferences: infinite

dimensional l3anach spaces do not admit non-trivial translation and

rotation invariant 0-additive measures [37] (eve n bounded balls in

infinite dimensional normed space do not admit such rotation and trans -

lation Invariant probability measures). However, a theory of probab-

ility measures on infinite dimensional spaces Is available. In the case

of HUbert spaces , there exists certain well studied standard classes

of rotational invariant measures , which can be described by limits
• of sequences of their restrictions to finite dimens ional spaces , since

HUbert spaces have countable base. In particular , there exist

Gaussian-type measures called Wiene r measures , commonly used In

mathematical physics , whose restr ictions to finite dimensional subspaces

I , t
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are Gaussian distributions , and such that any rotational invariant

measure can be represented as an average of such measures on pre-

Hu bert spaces [37]. These measures have many advantages; perhaps

the most noticeable one in our context is that their restrictions to finite

dimensional subspace are absolutely continuous with respect to the

Lebesgue measure and have well known properties. Thus the techniques

which require measures continuous with respect to the Lebesgue measure

for the study of aggregation problems described above can be used on

each finite dimensional subspace of the space of preferences. Since the

• whole space of preferences is given here a Hilbert manifold structure,

and since Hu bert spaces have the particular property of having countable
• base and can be described as a limit of an increasing sequence of sub-

spaces (this Is not true of most Banach spaces), one can expect that many

aggregation results proved in finite dimensional subspaces will go through

in the limit of a sequence of subspaces , i. e. , will carry through to the
• whole space. Another advantage of these measures is that, since they

are rotationally invariant, aggregation or voting rules for the types of

societies with the distribution of preferences they represent, would under

• certain conditions be consistent with majority rules [19].

With such measure theoretical applications in mind, we study

Hilbert manifold structures on spaces of preferences, induced by

Sobolev ’s norms [391. In order to justify the introduction of Sobolev ’s

norms in mathematical economics , we make use of the Sobolev ’s

inequalIties theorem [ 39] to show the relationship between these norms

and the norms and the Whitney topology on spaces of

(k-tImes continuously differentiable) functions ‘which have been used in

the math ematical economic literature . By Sobolev ’s theorem one can

___
•____ __/ .-_J_--___- 5-.-. ---5 -• —5——-— - . • • ••.-••-— -
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0
also show conditions under which Sobolev ’s spaces of preferences , while

being Hu bert spaces, and thus selfdual , are made up of preferences

representable by continuous or C’~ functions , thus combining two

characteristics which are very useful for economic theory.

Further applications of the techniques and results to properties

of the utilities and the demands as depending on the underlying preferences

are given in Chapter 3 and are described In the following summary.

b. Summary of the Results

In Chapter 2, Part a, we introduce an approach to the study of

smooth preferences. We show conditions under which smooth prefer-

ences (not necessarily convex or increasing) can be represented as

subspaces of a space of retractions from the commodity space to a

submanifold, and we show conditions for this space to be not empty.

We then endow the space of preferences with a Sobolev norm, and show

that it is a Hilbert manifold. We discuss other norms and their relations.

In Part b, we show that the subspace of the above space of preferences

which give codimension-one foliations of the commodity space is a

submanifold. Subspaces of convex and increasing smooth preferences

are also shown to be subrnanifolds . We then indicate how to extend these

results to a much larger space of preferences , represented by all

codimension one foliations of the commodity space given as retractions

into some (not necessarily the same) smooth one dimensional submanifold

of the commodity space. The above is restricted to compact commodity

spaces.

_ _  _ _ _ _ _ _
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In Chapter 3, Part b, we give sufficient conditions for a manifold

of preferences constructed in Chapter 2 to be a contractible space. We

show that the results of Chapter 2 can be extended to produce manifold

structures for spaces of many-agents preferences , which are described

each by a retraction onto a submanifold of the commodity space, more

general and of higher dimension than those of Chapter 2. These

preferences also define foliations of the commodity space, of higher

codimens ion.

We study properties of the indifference surfaces of the utilities

as related to the critical points of the vector field normal to the foliation

determine d by the underlying preference at the boundary of the commodity

apace. We study genericity of the set of pr eferences (not necessaril y

convex) that yield demand functions .

In Chapter 4 we extend the results on genericity of regular

economies of Debreu and Smale to economies with agents represented

by their preferences and endowments, and discuss extensions to a non-

compact commodity space, the positive quadrant in R’~. Existence of

equilibria is briefly discussed. Necessary conditions for the local

uniqueness and continuity with respect to the parameters of the equilibria

are also given.

-l - —- .5—--- .--- --~~--- • . -~~~~



Chapter 2

MANIFOLDS OF PREFERENCES

a. Introduction

We shall first discuss the geometrical motivation underlying the

construction of manifold structures for spaces of preferences. An initial

segment of this construction links with a method which has been used in

mathematical economics for representing one convex monotone preference

by one utility indicator studied rigorously first by Hermann Wold [45], but

introduced probably long before that. We now describe our construction briefly

by means of an example. Let f be a preference representable bya monot one con-

cave utility function g defined on the unit cube. The preference is completely

described bythe ~~~~~~~~~~~~~~~~~ surfaces ”, the level surfaces of the utility g

(I n the sense that two utilities with the same Indifference surfaces

describe the same preference, and two utilities with different Indiffer-

ence surfaces will induce a diffe re nt preference ). By monoto nicity

one can completely describe the set of all indifference surfaces of g

as the set of the inverse Images (under g) of the (real) values

of g on points of the diagonal D of the cubs. If one now maps each

point In the cube into that point of the diagonal D which has the same

utility value, one can completely describe the preference as a map

from the unit cube onto D, which Is the identity when restricted to D.

With this motivation In mind, one can show that such preferences as

described above correspond to certein types of retracti ons from the

cube onto D, I.. , maps from the cube onto D which restricted to D

are the Identity. Thus the space of such preferences can be thought

t __ ___ . .__ .  

~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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of a~ a space of retractions from the cube onto the diagonal. Without

the convexity and the monotonicity constraint, but under other , much

weaker , regularity conditions on the utilities representing the prefe r-

ences , one can show that certain spaces of preferences can be repres-

ented as certain subspaces of spaces of retraction from the cube to a

more general type of submanifold In the cube. One then studies these

subspaces of retractions and certain distinguished subspaces represent-

ing convex and monotone preferences and also preferences that defi ne
• codimension-one foliations of the cube (the leaves of the foliations being

-
• the indifference surfaces of the preferences), and shows conditions under

which they are themselves representable by manifolds. We also indicate

a method to give a manifold structure to more general types of spaces

of preferences: those given by retractions of the c o m m o d i t y  space onto

a submanifold that may be different for each preference. This is the

general �an of this chapter. We now describe the procedure in more

detail for very special cases , to motivate the general approach .

b, An Appr oach to the Study of Smooth Preferences

Let I~ denote the n-dimensional unit cube in Rn, and ~ the

sta ndard vector order of R~ . In its most general form a preference f

on I” Is defined to be a subset of I~ x 1n; (a ,b) E £ will also be written

a b, If (a , b ) E f and (b,a)E  f , we shall say that a is equiva-

1.nt to b, and denote it a~~1 b. f is monotone If a~~ b in the

vector order of R n Implies (a, b) E f. f i. called conve x whe n,

for ail a E l ”, the set (bE I” with (a , b ) E f)  is convex.
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For heuristic reasons , we shall first motivate the construction

by discussing convex and monotone preferences. Then convexity and

monotonicity assumptions are subsequently shown to be Lnessential to

the construction and dropped, and we study more general cases .

By the results of [11], if for all a E I’s, the sets (b €  I” with

b �~~ a), and (b € In with a 
~~ 

b) are closed (In I ’s), then there

exists a continuous real valued order preserving function g: In 
-* R ,

i. e.,  g(b) � g(a) when (a , b ) E  £ and g(a) g(b) when a~~ f b.

Such a function g is said to represent f and is also called from here

on a utility function representing the preference f. If f is convex , g

will be quas i-concave , but , as Is well known [32J , there are certain

convex preferences not representable by concave functions. If f is

monotone, g is increasing in the order � of I”. Then one can

visualize ~~ as the union of the convex sets

aE l n a

where f~ denotes the set

(bE  In: g(b) � g(a))

(see FIgure 1). Let D denote the diagonal in ~~ I . e , ,  D = (a E I’~: f
a 1 a2 

... as). I” can also be visualized as the union over a

In D of the sets = (b E  I~ : b~~f a), where a is in D, I.e .,

a~~D (b € I~ : b 
~~~ 

a) = a~~D 1a

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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FIgure 1

In a sense , the set of all “IndIfference set.” I for a in Da

• completely describe the preference f; if two such families of indiffe r-

ence sets are not Identical , they shall describe two different prefer-

ences. Thus , one can Intuitively think of the space of convex monotone

preferences as being represented or described by the space of such

families of indifferenc e sets.

We shall now look at dIffe rentIable prefe rences which are not

necessarily convex, but still keep the monotonlclty assumptIon. This

monotonlcity assumption will subsequently be dropped also. A prefer-

ence f shall be said to be of class ck, or k-times continuously

diffe rentiable (k � 2), if there exists a real valued utility function

g defined on a neighborhood of I” whic h represents £ - -th is definit ion
n

corresponds to Definition (LII) of Debreu (13] when, for aU x ( I

Dg(x) > 0, In which case f is said to be a .trLc~~v monotone Increas-

In& preferenc e.

-• ---

~/



-14-

0 ’
As In the case of a convex preference, one can express I as

a union of a family of Indifference sets indexed by the elements of the

diagonal D , i. e . ,

( 1) In = LI = Li (b E  Iii : b~~f a)
aED aED

If g is also everywhere regular, I. e., g admits an extension

to a real valued function ~ on a neighborhood U of I” such that for

all a E  I”, Dg(x) Is of ra nk one , then for each r E  R ,
n -1

is an n - I  dimensional ~ submanifold of R , or else g (r) =q5 .

(1) can also be stated as

(2) 1” = ij (g 4(r))
rER

Since g is Increas ing , g(1 , . ..  , 1) � g(x) for all x in I~. Without

loss of generality , one can assume that g Is positive valued , and that

g(O , ... , 0) = 0. Then, for any a in I~ , there exists a point b in

D with g(a) = g(b), by conti nuity of g and connectedness of D.

Therefore (2) can be rewritten as

• (3)  I
” = Li (g 4 (g(a)fl ,

aED

or, equivalently,

(4) = I.) (x: g(x) =
aED

Furthermore, for all r in R , the set g4(r) intersects D at

most once, since g Is Increasing , at a point a In D with g(a) = r.

If g Is everywhere regular, the manifold r~ (r) is transversal

I
, - 

‘ - - 
- -

~~~~~~~~
— —--~~ -5

- _ _ _  

I



~--.-.• --5---~~

-15-

to the manifold D In the nslghborhood U of I~ , since g is inc rea s-

ing. (See the definition i~ the appendix. ) Thus, In general, by (4)

the “utility function” g which represents the preference f can be

then identified with a map ~ g from 1n onto D, defined by

(5) ~~ (a) = b

whe re b E D  and g(a) = g(b).

Since g is increasing , is well defined , and, by the

defInition of ~ g’ vg(a) = a for all a in D. Note that for each

• preferenc e f the re exist infinitely many utilities representing 1,

actually an infinite dimensional family within the linear space of real

valued utility functions on 1.~i, denoted Ck(Ini, R’~), 1 The space

of preferences can be considered as a quotient space of Ck(In , R’)

with the following equivalence relation: If g 1 and g2 are in

• 

• 

c
k

(z
hl
,a

l), g1 I. equivalent to g2 if and only if for each a in D,

the sets

(b E  I~ : g 1(b) g 1(a))

and

(b E I”: g2(b) g2(a))

are equal, I. e., if g1 and g2 Induce the same preference of ~~

Ideally one would like to obtain a linear structure on the quotient space

Induced by or derived from the llnsar structure of Ck(I~ ,Rl).

However, the .qulvalsnce relation defined above does not have nice

tCk(Ia, R!~ is the spac e of all maps from I~ onto R1 which admit a
sxts ns ion to some neighborhood of I~.
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I
properties, in particular it Is not preserved under the linear structure

of c~’~(I”,R1) and hence the equivalence relation -~ does not induce, -

even locally, a linear structure on the space of preferences or quotient

space Ck
(I

n,Rl ) I_ . Therefore one has to take a diffe rent line of

approach.

In the following we shall give an intuitive description of a special

case of the construction of manifolds of preferences and a description

of its structure for the special case of strictly increasing preferences.

As we saw above, if g 1 and g2 are two functions in Ck(I~ ,R~)

which represent the same preference f (or , in othe r words , are in

the same equivalence class as described above), then the correspond-

ing maps ~ and ~ defined in (5) are the same. One can thus

define a one-to-one map • on the space of strictly monotone increasing

preferences, with values on the space of increasing functi ons from

In onto D, denoted F(I~ , D), given by

(6) •(f) = CPg

where g represents f. Intuitively, the idea is that in the case of an

increasing preference f there exists a one dimensional submanifold,

the diagonal D of In, such that “D represents f in terms of utility”,
ft .I. e . ,f o r evsry a In I , there extsts a polnt b in D with a~~f b and

If g Is a function representing f, the level surfaces of g Intersect •

D only once (and transversally) as we saw above. Once the value of

the function g on D Is known, and the ind ifference surfaces of g

are known, the function g is completely determined. However, any j ~
other increasing function on D which has the same Indifference -

•

: ~~ i
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Ii
f surfaces will yield the same preference. So what actually counts In

the representation of f is the Indifference surfaces of g, or , in othe r

word s , since g is Increasing, the sets (g ’(g(a))3 , for points a

in D. With the aid of these sets , the function 
~ g ~ constructed as

In (5) above, and for each preference f , If g represents f as above,

is a uniquely given element within a space of maps F(I”, D). Thus

the space of preferences can be mapped tuJ.cttvely (not btjectively)

into F(I~ , D) by 
~~~
. By a suitable transformation, the interior of D

can be mapped diffeontorphicall y into the real line R. Since the space

of maps FU R, R~) has a linear structure induced by the addition in

thIs structure can Induce a linear structure on y(1ft, D). This structure,

In turn, could be thought of as induc ing a linea r structure on the apace

of increasing prefe rences : the sum of two preferences could then be

given, for Instance, by that I nduced by ~ and the sum in F(I~ R):

+ f2 •(f 1) + ~ (f 2)

$

where 
~i represents 

~~ 
= 1,2 . However , there is a problem for

this procedure. Not any function on F(I~ , D) describes what we

understand by a preference. We have to restrict ourselves, as we

discussed above, to a subset of map. In p(1fl, D) that, restricted to

D, are the identity on D. Tb. usual addition in FU n D) will not

make this subset into a linear subapace of TU E, D), since if two maps

and f~ in T(I*, D) satisfy 
~1’D ~z ’D Ident ity on D, in

general, f 1+f2 as defined above, fails to satisfy f l+f Z I D = identity

on D. Hence, a further arg ument Is needed if one desires to consider

C ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —~———- - — —
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nthe space of monotone preferences as a linear subspace of 1(1 , D).

This ia discussed in Part c of this section. As for the topological

structure on the apace of increasing preferences , one can similarly

consider one induced by the injection map ~~~, from a suitable norm on

F(I~ , R 1), chosen from some of the norms which are available in linear

function spaces. Even if a lInear , or locally linear , structure is give n

to the space of preferences , one still has the problem that the topology

induced on the space of preferences by that on F(I n1,R l) may fail to

make the subspace of preferences complete. Linear subspaces of

complete infinite dixnena tonal spaces may fail to be closed . Hence , to

the study of the algebraic properties of the apace one has to add that of

a natural and adequate topology with the desired properties. This is

done in Part C of this section. As is freque ntly the case with infinite

dimensional spaces , the adequate choice of topologies is a delicate

point here. In addition to the mathematical adequacy criteria , one should

also add economic cons iderations. It Is desirable that the apace of prefe r-

ences has a norm and is complete, so that one starts by trying with norms tha t

yield Banach space structures. But the map ~ between the apace of

preferences and the space of utilities imposes a restriction from the

economic viewpoint: topologies on spaces of utility functions have already

been introduced In the literature , and they were chosen so as to conform

to economIc Intuition and also to provide the right mathematical frame-

work for the study of certain economic properties , for Instance, in

general equilibrium theory [ 38]. So one should look for norms on spaces

of preferences which, through •, relate adequately to the norms already

in use in the literatur, for spaces of utilities. Furthermore, if , as
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discussed in the Introduction, one would like to have inne r products

also, at least locally, on spaces of preferences. I. e., to give the spaces

of preferences a HUbert manifold structure, then a closer look at the

procedure is required to justif y the introduction of such further structure.

As the above indicates, the existence of a dlffeomorphtam from 6
Into R is important for the construction of the topological and the linear

structure of preferences on I~ . Aa we see in what follows, under certain

conditions, when the prefe rences cons idered are more gene ral prefe r-

ences of type ck, no longer assumed to be increasing , D can be

replaced by a more general type of one dimensional subrna nifold I of

In, I diIfeomorphtc to a segment , and a similar construction can be

obtained. Furthermore, we shall indicate how a still more general

apace of preferences can be given a manifold structure , one in which

each agent might have a different submanifold playing the role of D.

With all the above cons Iderations in mind , we now proceed to the

technical aspects and proofs . For definitions and other complementary

material, see also the appendix.

c. Const ruction of HUbert Manifold Structures for Spaces of

Preferences

In order to simplify matters in the following we shall as sume tha t

the commodity space S is a ball E~ C R~ , with two “antipodal”

points distinguished in its boundary, which shall be assumed to be the

poInts (0, . . .  ,0) and (1 , . . . ,  1), denoted 0 and 1, respectively .

This Is ‘ions for technIcal reasons: B~ has the structure of a C

manifold with boundary, while In does not. The results can then be

C  

— 

—— .

~~

-

~~ 
I



-20-

translated to any subset of R~ homeomorphic to B~, and whose

interior is C diffeomorphic to the interior of B~ --such as, for

Instance, S = ~~ We now need some definitions . For complementary

mathematical definitions , see also the appendix.

If N is an n-dimensional smooth compact manifold, the Sobolev

norm ~~ is de fined on the space of maps C ( N , Rm) by:

IIf II~ f E ID’~f (x) I2 dx
N 0 �I k I ~~ s

H
s(N,R

m
) is defined as the completion of C~ (N,Rm) under the

norm. These H0 spaces are Hu bert spaces with the inner

product defined by

(f,g)8 E D
’

~~f .D ’
~~g dx

N O � I k J � s

(where denotes the k-th derivative of the map f , a linear map from

to Rm ) and are caUed Sobolev spaces.

The Ck norm on the space Ck(N ,Rm ) of k-times conti nuously

differentiable functions Is defined by

H f ‘t k = sup jjf(x), Df(x), ., . . , Dkf(x) JI
XEN

Cb (N ,Rm) with the f i .  (J norm is a Banach space. The relatIon-

ship between the H5 spaces and the Ck(N ,Rm ) spaces is given by

Sobolev’s theorem . This theor em Is important to us because It will

be used to relate the Sobolev norm s used here to others used in the

mathematical economic literature such as the norms and the

Whitney topology, and we state it here:
I

~

I
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SOBOLEV THEOREM (for a proof, see [39]). Let a> n/2 + k.

Then Hs(N , R m) c Ck(N ,Rm ) and the inclusion is a continuous and
k m kcompact map where C (N , R ) has the C norm.

We shall start by working with a class S of preferences defined

on S satis fying certain conditions: f ES if and only if

(Cl)  these exists a ~~ (k � 2) real valued function g

defined on a neighborhood of S representing f.

(C2) there exists a compact connected strictly � ordered
.2C one dimensional neat submanifold I of S, with

= (0 = ( 0 , . . . , 0 ) U 1  = ( 1 . . . , 1)) and such that

for all f in If g represe nts f, g(1) � g(x) � g(O)

for all x In S, and g Is strictly increasing along I .

Note that the preferences in S are not necessarily increasing

or convex.

The fact that I is strictly ~ ordered will be used in the follow-

ing construction. However , this condition can be weakened to assume

that I Is contractible ; this will be proven later on.

We now show that for any preference f In 5, 1 represent s S

in terms of utility, much the same way that the dIagonal D represents the

increasing prefe rences in terms of utility:

LEMMA 1. If f is a preference in 5, ~~j g ~~~~~~~~~ f

then for any x in S, the re exists a unique point b in I with

g(x) = g(b).

is said to be strictly ~ ordered as a subset of R n when, if x and y
are in I, x 0 y ~ x< y or y< x. A submanifold N of a manifold M is
called osat if and only If its boundary ~N Is the Intersect ion of the
boundary of M with N , ~N N f l  bN, and N is also transversal to M

C at ~N. (S.. th. appendix for furthe r definitions.)
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0
Proof. This is Immediate from the assumptions: for any x

in S, g(1) ~ g(x) � g(0) by (CZ), and thus , by connectedriess of I ,

there exists a b e I with g(x) = g(b). Since g Is Increasing along

I by (C2). b is also unique.

Because of Lemma 1, the description of Part b which was given

for increasing preferences only applies now to all preferences in 5:

any preference f in S can be thought of as a retraction from S onto I .

Thus , S can be thought of as a subset of a space .~~ of maps from

S onto I. We shall choose as S the Sobolev space H5(S, I),

(s> ri/2 + k and k z 2) defined above. Given this choice of space , if

a k a
the preferences in S are assumed to be H (by Sobolev theorem C c H

sInce s > n/2 + k) then Sc H’(S,I), and this inclusion in injective .

We shall use this inclus ion to induce a representation of S as a diffe r-

entiable manifold. Let h: S -, I be in H’(S, I) such that h restricted

to I is the Identity map on I, I. e., h = Id1. Then h defi nes a

preference f on S as follows: for any a ES , let the set of points b

in S “preferred to a” according to f , I. e .,  (b: (a , b) E f) be given by

(be  S: h(b) � h(a) on

‘- and let

(b E  S: h(b)~~ h(a) on I)

be the set of points in S to whIch a Is preferred according to f ,

I. e., (bE  5: (b , a) C f}. The above can be formalized by the

followIng exact sequence

(7) 0 -ø S ‘
~, H5(S,1) ~ H ( I I) -, 0

‘
C _____________ _____________

— ~~~~~~~~~~~~~~~~~ 
.— — _________________
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where R is the restriction map defined by R(h) = hi 1, •: 5-. H’(S,I)

is defined by 0(f) E H5(S, I) defined as In (5) and (6) above:

g E H’(S,R1) represents f , and ~~g
(S) = b E  1, for ac  (g4(g(b)fl .

Since (7) is exact,

~~~~~~~~~~ R4(1d1)

So, provided the structure of the spaces 11 (S 1) and l1~(I, 1) Is

appropriate for the use of inf Inite dimensional implicit function

theorems [27] , one can then study the structure of the space S as

the Inverse image unde r R of an element, R4(id1). If R Is

• sufficiently smooth, and (id1) is a regular value of R , then S

can be shown to be a manifold by the implicit function theorem. This

procedure is intrinsic, i. e. ,  it does not depend on the choice of the

diffeomorphis rn between I and R 1. This Is the procedure we shall

follow.

In view of the above, we shall take as model space for the space

S the apace of H’ (s> n/2 + k, k � 2) retract ions from S onto I:

an H’ retraction is an H’ map from S to I which, restric te d to 1,

Is the Identity on I. For the technical reasons discussed above , in orde r

to obtain a HUbert manifold structure on the space 5, we shall con-

sIde r Sobolev norms on the spaces of functions we work on , One can

alternatively work with topologies on these function spaces . In that

case , one obtains Banach manifold structures for the spaces of prefer-

ences. This ii dL.cuss.d In Part d.

We now briefly discuss the structures of the spaces H ( S , I)

and H’(!, I). Man ifold structures for spaces of C and maps

between manUuida have been Introduced and studlsd La the mathematical

~~~~ 
—
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literature by Eells in 1958 and Smale and Abraham in 1961; the H~
case was studied by Elliason in 1967 and by Palais in 1968. Marsden[28],

[29] and Palais [34] are good references. In the append ix a description

is given of manifold structures of spaces of maps between manifolds .

In particular, it can be seen that if M and N are smooth (CU) compact

manifolds with boundary, and N a submanifold of M and ~Nc ÔM ,
5then the spaces H (M , N) are Hilbert manifolds with the Sobolev

norms defined analogously as above, but In local cha rts . Sobolev

theorem also applies: If M is n-dimensional , the space H8(M , N)

is contained In c’~(M ,N) when s > n/2 + k. So in what follows we

assume s > n/2 + k , where n is the dimens ion of the commodity

space S to insure enough differentiability of the preferences we work
2with; since s > n / 2 + k  (and k � 2)  the prefe rences wili be of class C

First we show that the restriction map R: H5(S , 1) -0 H5(1,I)

defined by R(f) = f is a C map. Then we study R~~ (id1) where

id1 denotes the identity map from I to Itself . Following the previ ous

discussion, the subspace of R 4
(id1) Is identified with S. We then

prove that id1 is a regular value of R , and thus S is a submanlfold

of H’(S,I) which inherits the (local) HUbert space structure of H5(S, I).

The next results are stated for general C manifolds with boundary

M and N , N a submanifold of M. A special case Is M = S and

N I. This Is done for technical reasons that are discussed at the end

of thIs section and in Chapter 3, where more general spaces of prefer-

ences are studied. For complementary definitions , see the appendix .

LEMMA 2. Let M and N C manifolds with boundary, N

a neat submanifold of M , ~N C bM. Then the restriction map

R: H1(M ,N) -. 0 ( N N) defined by R(f) t I~ i s a  C 
~~~~~

p.

-
~~~~~~~~~~~V • .-—-..- 

./
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Proof. By the definition of H’(M , N) and the assumptions

about 5, wIthout loss of generality we can assume that M and N

are manifolds without boundary. Recall that a map ç: H’(M , N) -. H’(N, N)

is ~~ (for all k 2  0) at f E H ’(M, N) If there exists a chart (U,~~1)

at f and a chart (V, 
~~~ 

at R(f) such that R(U) c V and

• ~ ~ Ø 1(u) •2(v)

is ck. Here ~ 1(U) and •2(V) are open subsets of T’(M, N) ,

the model space for Tf(H
5(M N)) the tangent space of H’(M ,N)

at f. By definition (see appendix), if v ~~~1ff) and h E  T’(-M ,N) ,

then the value at the vector ii of the linear map representing the

derivative of the map R at the point f , denoted DR(f;h) , if it

• exists , must satisfy

lim ~ N~ (v+b) - ~~(v) - DR(f;h) ~I 
= 0

V lIh~ ,O lihi

For any h in T’(M , N) define ~ k(f; h) as the restriction of h to N ,

denoted ~~ . Since h E T5(M, N), by definition h makes the following

diagram commutative:

M ~
V (where 

~N is the natural projection of the tangent bundle of N , TN

veto N). I. e., h(m) E Tf~~~N for all in E M. So, let ~i(f; h)

Then, sincø the diagram

I

• •V~~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V V V V . ~~ . V ~~ .V ~~~~~~~ V~~~~~~~ _ _ _ _ _ _

- V -~~ 
I
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commutes~ ~~~belongs to T’(N , N), and tt satisfies

R(v+h ) - R(v) - DR(f;h) = 0, by linearity of R on T (M , N), and

thus ~~~(f;h) Is the derivative of R , i. e., ~~ 4f;h) = DR(f;h).

Also, sinc e DR(f;h) is Independent of I, DR is continuous,

so that R is C 1. The same proof shows R is ck, for all k� 0.

PROPOSITION 1. Under the assumption of Lennna 2 , the

identity map ldN: N -. N I. a regular value of the restriction map

R: H’(M, N) -, H’(N ,N). V

Proof. Let ~ E H5(M , N) such that 
~‘N = idN (if there

exists no retraction from M to N , idN is a regular value by

defi nition). Note that if v Is a ta ngent vector at f , i.e., v~ Tf (H’(M I N))

then, since by definition the diagram 
V

M~~1T
commutes (I . e , ,  v(m) E Tf(m)N )

~ 
v Is actually given by a family 

V

of vector fields on N , indexed by the set ( ‘(n) for each n~ N.

We shall check that for any s in Tid (H5(N ,N)) there Is a v In

T1(H’(M ,N)) with 
~t N = 1

~~4 and DR(f; v) = s .  If ‘E T1~~~(H’(N ,N)) , 4
then s is actually a vector field on N , since by defInition , s “covers”

the identity, I. e., s(n) E T~ (N). In the lemma above we saw that

DR(f; v) = v/N. Let v be the element of T1(H’(M , N)) defined by

v(m) s(f(m)). Then v E T1(H’(M, N)), since it is given by the

(right) composition of two H’ maps, and DR(f; v) = s, which

completes the proof.

- .,1—~-.
• 

V •~~• • •
~~

• V ~~~~~~~~~~~~~~~~~~~~~ ‘F
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THEORE M 1. Under the assumptions of Lemma 2 , 
~~~~~~~~~

of H’ retractions of M onto N form an H’ Hu bert manifold.

Proof. This follow, from Lemma 2 and PropositIon 1 above ,

the Implicit function theorem for HUbert spaces [27]. and the fact

that H’(M I N) and H’(N ,N) are Hu bert manifolds (see the

appendix ).

Remark. The space of H’ retractions from M to N Is called

a HUbert manifold because It has locally a Hu bert space structure

Inherited from the (local) HUbert space stru t~tur e of H’(M , N).

However, this local Hilbert space struct ur e depends on the choice of

charts , i. e., the Inner product and the norm s may vary with the

choice of charts, they are not canonical. Such spaces are also some-

times called Hilbertable spaces , I . e . ,  spaces on which some complete
V 

Inner product exists.

• We next study sufficient conditions on N so that there exists a

retraction from M onto N.

LEMMA 3. Unde r the assum ptions of Lemma 2, if N i,

contractible, then there exists a continuous retraction from M to N.

Proof. Because by assumption N Is a neat subcnanifold of M,

It has a tubular neighborhood (see (22)) . TM. implies that the pair

(M N) has the “hoinotopy extension prope rty”, which allows standard

homotopy theory to be used [41]. It follows from contractibility of N

that every continuous map u: N -. N extends to a continuous map

___________________________ V

•~ ~ V
;~~~ •~~

•

V V
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from M to N (see , for example. [41), page 56, Exercise 6). Taking

u = IdN gives the retraction.

Remarks

1. Using arguments of partitions of unity, as In Lemma 4 below,

one can then prove the existence of a C extension.

2. A much simpler proof of Lemma 3 can be given for the special

case M = S and N = I by using Tietze ’s extension theorem to prove

the existence of a continuous extension j for the map id: N -, N ,

j: M -, N. Lemma 3, however , can be used for constructions of spaces

of preferences on more general manifolds M , where the preferences

are represented in terms of utility by more general submanlfolds than I.

We now extend Lemma 3 to prove the existence of a C retraction.
k

This will Imply existence of a C retraction, I. c .,  non emptiness of

the space of preferences S.

LEMMA 4. ~~~~~M and N be as in Lenuna 3. Then there

exists a C retraction f 1: M -, N.

‘F
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0 Proof. Let I: M.. N be the continuous retraction whose

existence is pr oven in Lemma 3. Let W be a tubular neighborhood

• of N . Let p: W -. N be the C retractio n of W onto N which

exists by (221. Let g be a C app roximation of f.g : M -~~ N, g

sufficie ntly close to I so that the segment in R° given by [p(x).g(x) ]

• is contained In W. Take )~ to be a C function from M into [0, 1]

such that

~~~~ 0 o n N

• = 1 outs ide W

Define

h(x) :M - , W

H by

g(x) If x E M - W

h(x) =

) (z)g(x) + (1- )4(x)) p(x) If x E W

when Z E N , )~~~0 *  h(x) p(x) x. Since p is C and ), is C ,

so ts a. So the map f 1 = p .h: V.. N i s a  C retraction from M 4
to N.

From Lemmas 3 and 4 It follows, In particular

COROLLARY 1. The space of prefereucss S

Proof. This follows imm.diately from Lemma 4, sinc e by (CZ)

I Is strictl y ~ ordered , which implies that I i. contractible by the

- • — V 
- ~V V V V V ; ~~~~~~~ V .
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classification theorem for one dimensional manifold s [30), since It

cannot have any loops .

In view of Lemma 4, we can now weaken assumption (C2) as

follows:

(C2’) There exists a compact connected contractible one

dImensional neat submaulfold I of 5, wIth

= (0 , 1), and suchV that for all I In S if g

represents f , g(1) � g(x) � g(0), for all x In

5, and g Is strictly Increasing along I.

V COROLLARY 2. Under condition (C2’), S ~

We can thus assume that the definition of S is given by ( Cl )

and (C2’) .

Note that the space of preferences S can still be defined as the

retractions from S onto I even If I is not strictl y ~ ordered in R n;
Cone cons iders a C diffeomorphism between I and (0, 1) which

Induces a complete order structure on I and repeats the above con-

struction to show that each element in S is a preference on S. In

view of Sobolev ’s theorem and Theorem 1. we can now prove :

THEOREM 2. The space of ~ references S has ~ Hilbert

manifold structure. 
V V

Proof. Note that by Corollary 2 5 is not empty. The set of

mape In H’(S,l) which are Increas ing along I form an open set.

This follows from the following facts . Tb. Inclus ion map

a
V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •__V __~~~V_

— — — 

- 

-— - _________
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1: H5(S I) .. Ck(S, I) is continuous when s > n/2 + k by Sobolev ’s
ktheorem. Since k� 2 , the set U of maps ln C (5, 1) whtch are

Increasing along I (i .e. , U = (g E Ck(S,I): 4, .g(x) > 0 where 4, is

the Ce diffeoniorphism of R and I} form an open set In Ck(S,I)
— 1by compactness of S and I. Hence, by continuity of t , i (U) is

open In H’(S ,I). Hence, In view of Theorem 1, since P = R4(1d1)f l  l4(U),

P is a manifold. This completes the proof .

d. Manifolds of Foliations and other Submanifolds of Preferences

In Part c we proved that S is a Hilbertable manifold. We

shall now study the structure of certain subspac.a of preferences of P

that satisfy further specificatio ns and other larger spaces of prefer-

ences 2 which include P. One may want to conside r , for Instance,

as in Antonelli (a] and Debreu [131. an alternative definition of smooth

preferences as foliations of the commodity space S. I. e., smoth

regular locally Integrable normalized vector fields on S. A normalized
k(unit length) C (k � 2) vector field v on S assigns to each commodity-vector

ka vector which indicates the preferred direction of the agent, in a C

manner. If such a vector field v, or preference, can be locally

described as the gradient of a utilIty function g, then it is called

integrable. If g is regular, I. e., Dg(x) # 0 for all x In S (or

equivalently, the vector field v has no singula r points , i. e., it is a

regular vector field), then the IndIfference surfaces of g are also

called “leaves ” of the foliation and each describe s a su~~~~nt-

fold of the commodity space of codtmenston 1. Ia pa rti cula r , there are

no “thick” Indifference surfaces for the preference f (for Instance, 
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indifference sur faces of posItive measure In the usual Lebesgue measure

of S). We shall first study a subspace of S made up of preferences

that satisfy this second definition.

Definition. Let be the aubepace of preferences f In S

such that the normal unit vector field to the Indifference surfaces of f

describe a foliation of S. Since for all f in 5, ~ is representable
kby a C utility function , g: S -~ R, and since by assumption (C2)

(or (Ca’)) g is increasing along I, then g is transversal to I ,

g h I, 9!~ coincides with the subapace of f in S representable

by Ck functions g: S -~R with Dg(x) ~ 0 for all x in 5, i.e.,

is made up of the preferences in S which are representable by

everywhere regular utilities . Hence , for any r E R , g~~ (r) is

either an empty, or an n-i dimensional C” submanifold of S,

and, in parti cular , since k~~ 2 . g4(r) has Lebesgue measure zero

in S, i. e., there are no “thick Indifferences ” in f. Since , for any

d ~ I , f4(d) g4(r), for some r in R , and g Is increasing

along I, It follows that the n-l dimens ional submanifold

for all d In I , is transversal to I. This transversality of the surfaces

f4(r) and of I eliminates cases such as tha t of Figure 2. 4

FIgure 2

V V V V  _ _ _ _ _ _ _ _ _  -

:~~~t~~k: ~-:
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We now prove:

THEOREM 3. The space of preferences in P which

define codimension one foliations of the commodity space S is an open sub-

manifold of 5, and, ~~~~~~~~~~~~ 5
~ 

has a HUbert manifold

structure.

Proof. In view of the above discussion, P
~ 

= (f ~~P such

that If g represents f , Dg(x) # 0 for all x In S). By Sobolev’s

theorem, Sc C 2(S, I), since a >  n / 2 + k , and k �2 .  Since

S is compact, the set

V = (g E C2(S,I): Dg(x) ~ 0 for all x in S)

is open In C2(S, I). By Sobolev’s Inequality, the inclusion map

I: H5(S,I) -, C2(S, I)

is continuous. Hence, i4(V) I. open in H5(S,I), and thus

‘~ 
= C ‘CV) fl S is a submanifold of P. This completes the proof .

We now study other important subspsces of S. Let S~ be

be the space of strictly monotone increasing prefe rences in 5, and

let be the set of strictly convex preferences In

THEOREM 4. The spaces 
~~~ 

of strictly increasing

and of strictly convex prefere nces in P respectively, and their intersection

53 = are open submanifolds of S. ~~~~~~~ they have

HUbe rt manifold itructures.

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~ ~~~~~~~~~~ 

- - -*___-
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Proof. Note that both and are contained in

Hence, by Theorer:~ 3 it suffices to show that they are open subsets of

V S~. Note that and are open subsets of with the C2

norm on C2(S, I), which inherits from the inclusion

So c Sc H8(S, I) c C2(S, I)

given by Sobolev ’s inequalities. By compactness of S, and

are both open sets with the C2 topology (see , for instance [38]).

Hence, by the same arguments of Theorems 2 and 3, and

are subinanifolds of 5~. Thi s completes the proof .

We shou’4 note that all that was said about the structures of 5,

~o’ ~~ and lPz can be rephrased for no rms as follows :

COROLLARY 3. ~j, in the above, the spaces H5(S , I) and

H5(I , I) are replaced by Ck(S, I) ~~~ c1
~(I , I), k � 2, then all the

• results of Theorems 1 , 2 , 3 , and 4 carry through and yield corres-
k ipondI~g Banach manifold structures of type C for the spaces of

kC preferences defined as f ollows:

(1) ~~ (f satisfying (Cl) and (C2’), f E C k(S, I), ~ E R ’(1d1)1

(2) (f E~~ and f defines a codimension one foliation of S)

V 4
(3) = and f is strictly increasing )

(4) ‘~ 
= {f E 

~~~~ 
and I Is strictly convex)

(5) D3 = S 1f lp2 .

V

~~~~

V V

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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e. More Gene ral Spaces of Foliations of the Commodity Space

We now indicate how to study a much larger space of preferences

than the space P~ studi ed above . Detailed proofs of the results

described here will be give n elsewhere , since otherwise we would

make this work too long. However, the ideas are simple and worth

pointing out here.

By definition, 5
~ 

is given by the codixnens ion one foliations on

the commodity space S that are retractions onto some fixed submani-

f old I. In order to indicate the dependence of on I we shall

denote it here We have shown that conditions (Cl) and (C2)

(or (CZ’)) together with an appropriate choice of topologies , made

into an H8 Hilbert manifold. We shall now indicate how to

extend the results to a space of smooth preferences 2o, the space of

all C codimens ion one foliations of the commodity space S which

are given by retractions into some C one dimens ional neat contractible

subinanifold of .S , this submanufold being allowed to vary from prefe r-

ence to preferenc e. Forma lly, f E 2~ 
if and only if

(C 3) f . is represent able by a C utility g: S -~ R defined

on a neighborhood of S,

and

• (C4) There exists a compact connected contractible C neat

one dimensIona l submanifold I of S , which. In general,

depends on f , with ~t = (p ) u ( q ) c ~S, and such

that if g represents f , g(q) ~ g(x) ~ g(p) for all x

V In S and g is IncreasIng along I.

I ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
V 

V

V V 

-— ~~~~~~~~~~~~~~~~~~~~~~~~ 
I
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The manifolds 1 satisfying (C4) are also called admissibl e. The space

can be visualized as the union of the spaces ~~ (I) , t. e . ,

~ o ‘o~’~I

where I is any admissible subinanifold.

We have now restricted ourselves to C preferences , or prefe r-

ences representable by C” utilities for the following reason: In the

proof of the manifold structure for the space 
~~ 

(which will be

modelled on spaces of C” maps and hence it will be a Fr€cbet space

rather than a Banach or Hilbert space) one uses the fact that each

is a C” manifold, and then attempts to paste the Po(I) ‘s together

to get the C” structure for the union U1 ~~~ = 
~~ ~~ L5 t ri thL~

“pasting ” that C” of the functions us required. For , if f can be

represented as a retraction from S onto I~ and also a retraction from

S onto 12 (i.e. , f is in the intersection of .
~~

(I
i) and 5o~ z~ ’

then the natural change of coordinates from .~~
(1i ) to P~

(Iz ) will be

induced by composing f in the left , with a diffeomorphism ~ between

and I
~
, induced by the leaves or level surfaces of f. See Figure 3

below.

/ / I !

I 1 1 I ( J ~ / I ’ 17 Figure ~~•

‘ 
I i /L f ~

, /

~I u  I II ’
\~ t i ~ I ‘I
‘ I ’tt_,~’’ ‘ t , I

t~~~~~ \ ‘\ t  V
\_ \ \ \ \ ~
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The dotted lines in Figure 3 represent the leaves of f. The heavy

line is a leaf that retracts onto x 1 In I~ , and onto x2 In 12
according to I. So if 

~ 
is the map that sends x1 into a2, • d.ter-

V mines a C” diffeomorphism between I l and 1~ if f is C” and

is a Ck map If £ is Ck.

Sinc e , for 
~E 

So(1i)t1 ‘o~ 2~’ the change of coordinate s from

to 5o0z~ 
is actually I.. 

~ • f (It is easy to check that

indeed, ~ • f is a retraction from S onto 1a~ 
and since ~ is

if f Is a preference, so will be ~ • f. However, the map of

function spaces £ i., ~ • f (composition on the left) will, in general,

not be even C1, even if ~ is C’~. For a discussion see [28] or [29].

(1f f is in Ck a n d Ø  Is in ~~~~~~~~~ then f - . Ø . f  i s a  C8 map of

function spaces.) However , if f and • are C”, then the left

composition map of function spaces f.. 
~ • f is C”. Thi s is a main

reason for usIng a C” (Fr~chet) topology in this larger space of

foliatIons 1
~ 

The procedure described above of changes of coor-

dinates between S~(11) and 9)(12) is actually the way of Inducing

the manifold structure for J,~. There is , however , a technical

detail here that cannot be ove rlooked. In the proof of the result that

was a Hu bert manifold we used the Isomorphtsm

~ R ’(id1)

and the implicit function theorem for HUbe rt spaces. If S~(I) is

modelled by C retractIons , the implicit theorem is no longer valid,

since sp~aces of C” maps are Frechet spaces (not Banach spaces)

and for these spaces the theorem Is known not to be true In gene ral.

~~~~ &sr r~ 
-- V~ - - -  

• - 

- - V V_______________________
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However, another method than the implicit function theorem is available

in this case to prove that ~~~I) is a C” Frechet manifold. Bas ically,

all admissible l’s are diffeoniorphi c to the line R ’, say, through

diffeomorphisms O~
: 1 -, R’. So one can stud y the space ~~ (I)

through the diffeomorphism 
~~ 

as a subset of the space of C~ maps
I . 1 .from S into R . This C (SR ) is a linear space , wi th addition

induced by addition in R’. The quest ion is whether the 
~~~~~ 

which

is the set of retractions from S onto I can be represented as a C”

manifold. The answer is affi rmative, but it requires a proof with a

method less appealing tha n the one we gave here by the use of the

implicit function theorem , which is not available in Fr~ chet spaces such

as spaces of C” maps.

Remarks.

1. Note that all the preferences in and in 2o are globally

integrable, I. e., representable by globally defined utilities. If v Is a

locally Integrable vector field which defines a monotone prefe rence on S,

then by [13) and [43), it Is actua]ly globally integrable as well; this

monotonic ity assumption is suffIcient but clearly not necessary for the

equivalence between local and global integrability. M. H irsch and the

author have found a necessary and sufficient condition for the equivalence

• of local and global integrability of codimens ion one foliations on S that

will appea r elsewhere. In any case , there is a difficult and important

open question here : If I is a (nonempty) space of ~~ codimens Ion

one foliations of S, unde r what conditions will I be a manifold?

_

• 
I
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A subspace S~ of I made up of globally integrable ones is proven

here to be a manifold- -how much can one improve this result? And,

further , what can be said of the space 1k of all codimenslon k

foliations of a C” manifold M with boundary If ~

2. An extension of the results of this section to unbounded

commodity spaces seems diffi cult to obtain for the following reasons:
V 

topologies such as those given by the Sobolev norm and the Ck norm

t are not defined on unbounded regions unless one uses a weight factor

or finite measure as in (5). ThIs complicates the geometry of the spaces

at infinity. If one attempts to use Whitney topologies [38] which are

• adequate for spaces of maps define d on unbounded regions , one loses

a crucial tool; the implicit function theorem Is not valid any longer

since spaces of Ck map s with the Whitney topology are not Banach

spaces. However, the fact that on each compact set of the type of

the set S the results carry may be all that Is needed ir many cases.

The positive orthant R~ of R~ used frequently as a commodity space

can be represented as a countable union of an Increasing family of sets

of the type of S, and as we see in Chapter 4, this allows many results

to go through.

_________—

• 
V • 

~
• _ - V
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Chapter 3

PREFERENCES , UTILITIES AND DEMANDS

a. Introduction

In this chapter we study properties of manifolds of preference.

and also pr operties of ut ilities and demands of the agents In relation

to the underlying preferences. In Part b we study a topological

prope rty of the manifold of preferences S (represented as a space

of H5 retract ions from the commodity space into a subznanifold)

defi ned in Chapter 2. We show that under the conditions of Chapter 2,

S Is a contractible space, and we indIcate possible extensions of this

result . We also discuss more general spaces of preferences , which

we call many agent prefe rences . In Part c we study properties of

the utilities of the agents derived from properties of the underlying

• vector fields defined by preferences in the boundary of the commodIty

spaces. In Part d we also show that a generic set of preferences In

S yields demand functions whIch are locally well defined and of class

on prices and incomes. Also, for a gene r ic class of preference.
in 5, the demand vectors depend in a C ’ manne r on the underly ing

prefe re nces , on an open dense set of price and income vectors. These
• results are local , and they are proven without convexity or monotonicity

assumptions on the preferences ; for the special cases of 53 (convex

and monotone prefere nces) analogous global results are proved.

V 

-

~~~~~ 

—___ — - 

~~~~~~~~~~~~~~~~~ 
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b. Properties of Manifolds of Preferences

We shall now study a little of the topolog y of S and of other

related manifolds of preferences. Assume that M and N satisfy

the conditions of Lemma 2 of Chapter 2. Recall that R is the

restriction map , R: H 5(M , N) -. H5(N ,N) given by R(f) = f /N .

Then one has the following

PROPOSITION 2. 
~~~~~~~ H’ retractions from M onto

N, R4(idN ) Is a contractible space.

Proof. First assume that N Is convex. Fix a retraction

f: M -~~ N. For any retraction g: M -, N define a homotopy

zt(x) = ( l— t )  g(x) + tf(x) , O~~ t~~ 1

Define th. map ~ : R4(idN ) x I -, R ’(IdN) by ~(g,t) = 
~~~~~ 

Then

~ (g, O) = g, ~ (g, 1) = f~ Note that Is In H (M,N) and is a

retraction, I. e., g~(x) = a, for each t. Hence R ‘(IdN ) ~

contract ible.

( If ,~ Is a C diffeomorphism y~~~: N -, N’, Induces a C”

difisomorph ism (since a >  n/2 + k) between the space of H retrac-

tions from M to N (see [291, Lemma 2. 2. 1), and the space of H’

retraction from M to and thus the above extends to any N 1 which

is diffeomorphic to a convex N. This completes the proof.

From PropositIon 2 we obtain:

THEOREM S. ~~~~ gp~~e S of preferences is contractible.

_ _ _ _ _ _  -- _ _ _
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Proof. This follows directly from Theorem 2 In Chapter 2 and

PropositIon 2 above applied to M S and N = I.

Remark. Note that the proof of Propos ition 2 Is based on the

fact that N is contractible itself. A natural mathematical question

Is how the topologIcal structure of the space of retractions from M f
onto N ii related to the topological structure of N for more general

man ifolds N. Since M is retractlble onto N , the topology of M is

aiso dependent on that of N.

As discussed in Chapter 2, Part a, S can be visualized as a

subset of maps in F(S,R ’), by mapping a preference f Into

0 f: S -, R 1, where 0 Is a diffeomorph ism between I and R ’.

However , under the usual addition in F, Induced by the addition of

the values of the map in R ’ (I .e. , • . f + Ø . g ( x )  ~~.f(x ) + O . g ( x ) )  (
S Is not a linear subset. But, for any O~~ )~~ 1, the addition of

two elements f and g in S given by the convex combination with

factor X and 1- )~. in F (i.e. , • • f + • g(x) = ),(Ø • f(x)) + ( 1-X)(~~. g(x))

Is an element of S~ since )~( f(x)) + (1-)j( g(x.)) = a if a is In 1.

Therefore , we have 4

COROLLARY 4. ~~~~~~~ 9 of preferences can be Identified,

for each C” diff cmorDhlsm •: I s  R ’ with a convex subset of the 4
~~~~~ ~~~~~~

Proof. It follows from the above observations and from the fact

that the left composItion of an H’ map with a C” map is (since

V 

~~~~

V

:!:~~j

: 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ V •~~~~~~~~~~~~_ _ _
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The results of Theorem 5 may have interesting economic

applications as well. For instance, In dynamic models where the

time dependent or choice variables are preferences (such as optimal

advertisement models , or , more in general, political-economic

models whe re peoples ’ prefere nces can be influe nced or made to

vary) the property that S be convex or contractible and the fact

that the Inclusion H5 C C’~ is compact if s >  + k may be

useful to prove existence of equilibria by fixed point arguments.

• In this light, it may be of Interest to consider the following extension

of the definition of to spaces of many agent preferences 53~

Consider a space of families of j unit vector fields

V = (v 1,... , v )  defined on the commodity space ~ R n, with j <  n.
V For each point x in S, the i-th vector field indicates a preferred

direction of the i-th member of the economy, I. = 1 ... ,~ . Assume

V 
that S~ can be Lmbedded In the space of retractions R ’(idN) where

R: H’(M N ) -, H’(N ,N) Is tI~e restriction map, and ~ 0. This

can be deduced, for example, from analogous conditions to (Cl) and

(C2) of Chapter 2.

Definition. Let S~ be the fam ily of such cndimension n-j

foliations on S with the H’ topology Inherited from the inclusion

S c H’~M, N). These S define a family of preferences of j

agents on S and are thus called a space of many (j) agent preferences.

From Theorems 4 and S above, one has:
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THEOREM 6. The space of many agent pref e rences S

with the H’ structure inherite d from H’(S, I) is a contractible

Hu bert manifold.

Proof. This is proved In the same way as Theorems 4 and 5.

I
c. Properties of Utilities

Next we discuss the structure of the hypersurface (or indifference

surfaces ) of the utilities representi ng prefe rences in S~. It is of

interest to study when each indifferenc e surface is connected , I . c.

when the agent can move along the indifference surface continuously

from one bundle to any other bundle which is equally preferred. Related

questio ns were studied, for Instance, in [25]. As the example in

Figure 4 shows, In general a retraction does not have this property.

The retraction from the square to I is Indicated by the arrows

on the level surfaces. The dotted paths Indicate the value of the

retraction for the level surfaces on the bottom right hand side of the

squa re.

I;_ 

~

..±-,- t 
N 

-
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~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~:

Figure 4

We shall next study sufficient conditions for the indiffe rence

surfaces to be connected and contractible, which are subsequen’i.y

weakened in Corollary 4.

The condition (2) of Proposition 3 below can be described by:

Starting at the zero indifference level and following any path in the
V 

direction of maximal increases of utility at each point, the agent with

prefe re nce f can reach all utilities levels. Recall that is the

subsp.ce of prefe rences in S which are codimension-one foliations

of the commodity space.

PROPOSIT ION 3. Let £ be a preference In the space S~.

Let g :S-i R E~~eM £ and assume:

(1) there exists a ne(ghborhood U of (0,...,O) such that

Un ~S La the indifference class of (0,... ,0) and

____

— 

•
1 

- ~~~~
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(2) each flow line of the gradient of g starting at a point in

U f l  ~S meets every Indifference surface of f.

Then all indifference surfaces of f are diffeomorphic to U fl ~S.

Proof. The indifference surfaces of f are , by definition,

transversal to the flow of the gradient of g. Furthermore, each flow

line of the gradient3 intersects each indifference surface in at most

one point. By following flow lines of the gradient vector field then,

one can induce a diffeomorphism from each ind ifference surface to

Un ~S. This Is proved in Proposition 2.2 of V-2-6 of [ia ]. Thus

all Indifference surfaces are C 1 diffeomorphlc to U fl ~S. This

completes the proof .

COROLLARY 5. If conditIons (1) and (2) of Proposition 3

are satisfied, and at least one indifference surface Is (connected and)

contractible , all indifference surfaces are (connected and) contractibl e.

Proof. It follows Proposition 3, since all indifference surfaces

are diffecanorp hic. V

Since the preferences in S~ are given by regular retractions ,

we shall next study what properties of £ as a retraction from S onto

I are sufficient to obtain the same result. Let Df(x) denote the

deri vativ, of the retract ion map f: S -. I so that if x.E ~S.

Dfl as (x): TZ aS -, Tf~~ I .

3Foir a definition of a flow line, see [22] (V .2-3).

a

— V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V—  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~---.--..
V -
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PROPOSITION 4. Let f E S~. and let g: S -~ R represent

f . Assume that there exist only two critical points of the projection
V on ~S of the vector field give n by the gradient of g, 

~~~ 
(0) = (0,... ,0)

and (1) = (1,...  , l) and they are not degenerate. Then all indifference

surfaces of f (except (0) and (1)) are connected and contractibl e.

Actually, they are all C’ diff eoznorphic to n-l dimensional discs.

V Proof. Recall that for f in 9~, any g representing f ha,

rank one everywhere , in a neighborhood of S. Choose one such g.
kWe now define an auxiliary C vector field: let w be a vector field

defined on a neighborhood N 0 of ~S such that

(1) on ~S, w is equal to the projection of the gradient of g.

(2) The inner product ( w(x), grad g(x)) � 0

For example, let w(x) be the orthogonal projection of grad g(x) on

the sphe re of radius lx i  concentrIc with S, when S is the usual

metric sphe re. Take X to be a C” real valued function on a neighbor-

hood of S 0~~~)~~ 1, and X = 0  exactly on  bS. Define v~ a

vector field on a neighborhood of S , by

v
~ 

= (l-X)w + X (grad g)

For all ),, v ,~ is and v
X Is trans versal to the level surfaces

(except (0) and (1)) of g, for V

(v )~,(P)~ grad g(p)) = ( l-)~(p))(w(p), grad g(p)) + X(p)~ grad g(p) I
2

Each a uznma nd Is � 0, and X(p) Igr a d g(p) j 2 = 0 only if )(p) = 0;

but thsn, v ,L Is gr ld g(p)  if p # ( 0 ) , ( l )  (w(p) and grad g(p) make

an acute angle).

~

; V 7 V

~~~

:

~~~~~~~

V , V 

--~~~~~~~_~~~~~~~~ 

V



(0) ~~~~~~~~~~~~~~~~~~~~(l)

Figure 5

Flow lines of

Note also that v
~ 

has only two sing ularities for all X (at (0) and

(1)) by construction.
1 ~ nThere exist coordinates near (0) such that g(x , . .  . ,x ) = x

In these coordinates, near (0), ~S is the graph of a function
h: R’~~

1.. R ’ that is ~S is defined by the relation

n 1 n-ix = h(x , . . . , x )

and S is defined by x~~� h(x 1, . . ., x’~~’).

The nondegeneracy assumption on the gradient of g

Implies that h is a Morse function [31]. By Morse ’s lemma [31]
there are new coordinate , in R~~ 

~~
, say (n’,. .. , n~~ 

1) so that

= (u’)2 + • ~~• + (u fl_ t )2

Therefore , the indIfferenc e surfaces near (0) are n-i discs. The
oth r indiffe re nce surfaces (except (0) and (1)) are all diffeomorphic
to these by following gradient lines of v~ (simila r to the pr oof of
Prop osftion 3). Thi, completes the proof .

LV~~ 

V
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Remark 1. We conjecture that in two commodities if there exist

exactly n points ~~~~~~ , x~ in bS such that the gradient of g

does not have rank one , then each indifference surface of the preference
f in ~~ represented by g has at moat n-i connected components.

2. More generally, for n-dimensional commodities spaces S

there is a connection between the topological type of the indifference

surfaces of the preferenc e f in and the critical points of grad g
in the boundary, which can be studied using Morse theory.

We now discus s fur ther relations between the properties of

utilities and the underlying preferences. In the next result we give a

sufficient condition for an everywhere regular utility function u

on S to induce a prefe rence f on S which is actually representable

by an element of a space ‘to’ for some I , i. e., a retraction from

S onto some submanifold I of S, I contractible and neat. We then

use this result to show an extension of Propos ition 4: we give necessary

and sufficient conditions for a utIlity function to Induce a preference
V whose indifference surfaces are all connected and contractible.

Let £ be a preference representable by a regular utility

( function u on S. Then there exist two points z and y in the boundary

of S ~S, with the gradient of u orthogonal to ~S at x and y,

f Increasing towards the interior of S at x, and decreasing towarda

V the interior of S at y. This Is immediate ; since S Is compact,

u assumes a maximum x and a minimum y In S. Since u Is

ever ywhere regula r , the gradient of u in I cannot vanish , and thus

both x and y lie In the boundary of S. Therefo re , at both x and y

~~~~~~~~ 
V .  

~~~~~~~~~~~ ~~V V V~~~~~~~~~ V
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the g radient of v projected on the tangent space of ~S must be zero .

If the preference f is given by a retraction of S onto a submanifold I ,

the points x and y correspond to the points where I Intersect. ~S.

If f Is Increasing , I Is the diagonal, and x = (0,... .0), y = (1,..., 1).

Conversely , under certain conditions , If £ ts represented by a regular

utility u: S -. R4
~, then f can actually be representable by a

retraction from S onto some one dimensional (neat) submanifold I

of S.

PROPOSITION 5. Unde r the conditions of Proposition 4, f is

representable by a Ck retraction u from S onto a one dimens ional
kC contractible neat submanifold of S denoted I.

Proof. We shall construct the manifold I using flow lines

of vector fields given by the preference. Ideally, one would want to

take as I a flow line of the gradient of a function g representing

f E S~. Such a function has both its maximum and its minimum at (0)

and ( 1), sInce by ~he assumptions of ~~~~~~, g is everywhere regular.

However, It Is not necessarily true that a flow line of grad g

(denoted I
i) should begin at (0) and end at (1). (See Figure 5 below. )

Instead, we modify the vector field grad g as In the proof of ProposI-

tion 4, to obtain a vector field v~ . This vector field v ,~ 
has a flow line

starti ng at (0) and ending at (1); v
> 

is transversal to all level surfaces

of g other than (0) and (I) and it intersects each e~~ ctIy once. Hence f

can be given as a retraction u from S onto a subinanifold I , namely

a flow line of v) kr some 0~~)~ 1. That u isa  t tr action

follows from the implicit function theorem.

I --__

/
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(0) ~~~~~~~~~~~~~~~~~~~~~~~~~ (l)

Figure 6

Defi nition. f is called a Morse preference if £ e s~ and £

is represented by a utility function g: S ~~R such that g i~ is a

Morse function (i. e., g restricted to bS is everywhere regular and

the zeros of grad (g i S~ 
are nondegenerate [311). It Is important tO

remark that If f Is a Morse preference, then every C2 utility function

representing f is also a Morse function. This is because locally, the

nondegeneracy of the critical points of the gradient of the utility function on

is determined by the underlying folIation (1. e., the preference relation).

THEOREM 7. Let f bea Morse preference in S
~
. Then a

knecessar y and sufficient condition for f to be representable by a C

retraction from the commodity sn ce S to a one dimensional neat

contractible submsnifcld I of S, with all indifference surfaces

connected and contractible, ~ jh.t th. gradient of the utility u repres -

e**Ing f has oslv two critical potn~ (denoted (0) ~~~ (1)) when

pro4~ctsd to the tangent space of the boundary of S.

~~~~~~~~~~~~~~
— V~_
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Proof. Sufficiency was proven In ProposItion 4. We now show

necessity.

It follows from a tandard tool of algebraic topology, the Poincar&

duality theorem [41], that the boundary of a compact contractible

manifold has the same Betti numbers as a sphere of one lower dimen-

sion. Therefore, all the level surfaces except (0) and (1) on the

boundary bS have the same Betti numbers as the n-2 sphere. It

follows from Morse theory [31] that there cannot be any other critical

points except (0) and (1) (the minimum and maximum of u) since

otherwise the Betti numbers of the level surfaces would change as a

V 
critical level is passed which contradicts the hypothesis.

& Properties of Demands

In this section we study certain properties of the demands In

relation to the underlying preferences . For references , see , for

instance [3] . Reca ll that if £ E~~~ 
ii represented by a concave

increasi ng utility g: S -, R, then for each pair (p, y), p a pric e

vector and y Income, the value of the demand function at (p,y) ,

d(p, y) is that vector h in S which satisfies

4 
_ V~~~~~~~~~~ V~~V~ V V V • V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -
~~~~~~

V 
V . V V 

VV ~~~~~~ V~~qV~ 
- . ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
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(1) g(h) = max g(x)
xEB(p , y)

where the budget set B(p, y ) of S is defined by

B(p , y) = (XES: x p . � y~

If g is not concave or increasing, d(p, y) is in gene ral not well

defined as a function.

The next result proves that under certain conditions, for a generic

set of prefe rences , the demand function d(p, y) is locally well defined

and of class C ’ on prices and income.

V 
Let ~ be a subset of (the increasing preferences in

V which is bounded In the H~
4 1 norm. Let p E P C R~

4
, y E Yc R~,

P and Y compact sets representing the space of prices and of incomes ,
V 

V 
respectively. Assume that the interior of P is C diffeomorphic to

an open ball in R~ , and the interior of Y to an open interval in R.

For related result. in the context of utilities rather than preferences,

see , for instance [6] .

THEOREM 8. For an_open and dense set of preferences in ~~~~~,

the interior solutions of problem (1) above define locally unique C1 demand
function s df(P~ y). on a subset of P x Y which contains an open and

~~~~~~~ t.

V V - V V 
.V V~~~~~~~~~~~~~~

V V V V
~~~~~~~~~~~~ V

V
V~~V

•
,

V~~~~. V V V V ~
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Proof. For f in ~ let g = 0 •t E  Ck(S,Rl ) represent f,

where • Is a C diffeomorph ism between I and R . Define the map

4i:~~~ x P x Y -, Ck I
~SXR I , R n

X Y)

by

4a(f p,y)(x, )~) = (L.~, .f).i. >~ ,

where X E  Note that for each p,y in P~~ Y 44. ,p, y) is

continuous as a function on S since the map

~ : Ck(s,R1)~, C1
~~~(S,R 1)

defined by

g..

k k-iIs continuous In the respective C and C topologies , and the

Inclusion map

c H~ (S,I) c

is continuous by Sobolev a theorem. Thus ‘l. itself is a continuous

map. Cons ider now the restriction of 4, on S x B0, where B0 Is

a compact interval In R 1 which contains the X ’s in the kernel of

4.(f ,p ,y)(x, .)  for x in S. Such B0 exists by the results of [35],

page 30: for all x i n S  and for sll (f p y) in ?~~~P~~~Y the

respective ) s  In the ker nel of 4.(f,p, y)(z, ) are centaIn•d in such

a compact ret. For simplicity, denote 441, p, y) 1$ B by 441, p. y).x o

V*

~~

*

~~

V 

V • V  
V~~~~ V V TV

V

~~

V

~~~~~~~~~~~~~~~

V

~~~~~~~~~~~~~~

V

,
. 

- --
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Let B , Z S X B0. Thus

4(f ,p,y ) E Ck l (3 1. R D
X Y)

Let 9 be the set of map. 4 in C~~~
1(B 1. R DX Y) such that 4 has

zero as a regular value (denoted ~ ($~
, 0).  Since B~ is compact by

openness of the transv.rsality property on comp ct sets 1 1), ~ Is an

open set.

Consider now the restriction of th. norm on the subset I

of C~~
1(B 1, R~ x Y), where I is the image of ?~ P x Y under 4,.

Let ~ = ~ fl I , and give I the relat ive topology. Let be defined

V as equal to 4, on the doma in of 4,. but having I as Its ra nge . Then

z e fl I is open In the relative topology of I , and by coetinaity of

V ~, 
~~~~~~~

(j) is al.o open ln ~~~~~~~~~ Note that ~~4(I) is

conta ined in the set of elements in ? ~ P x Y such that the corre s-

ponding Interior optimal solutions of (P) define locally a unique C 1

demand functIon , by the Implicit function theorem (since 4.(f,p, y)

is r.gular at the kernel of 44f,p. y) if and oaiy if It Is invsrtlbl.).

Hence, for an open set of elements in I, and an open set of price

and income pairs In P ~ Y the interior solution, of (I ) defin, locally

uniq ue C 1 demand functions. By Sard ’s theorem (see ( lb . since

k n 2, the s•t of regular valu es of ~(f, p, y) is dens. in Re
x Y .

Then, for any ( > 0 , let (q, k) E R~x Y be a regular value of the

map ~~(f.p, y), with k.kI < ~~. 
Defies ~~ by

~~( (f,p, y) 441,p. y) — (q, k)

Note tbat ~~~(f,p, y) 4ii 0 if and oely if (q, k)~ Re
X y Isaregular

valus of ~(f, p, y). If • .T Ø . f - q z ,  and ~~~~y - k , then

1
_ _V

~

V . .V V V

~

V .

~

• V V V V V V  V __

~VV _ _____________________________ ~V
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= ;j;(7, P;;~)

Since S is compact and • is a C diffeomorphlsm . T can be taken

to be arbitrarily close to f in the Ck norm by choosing ~ small
— s kenough. Since the inclusion Sc H (S I) c C (S,I) is continuous ,

I can be taken to be arb itrar ily close to f also in the H norm of .~~.

Similarly, ~ can be chosen arbitrarily close to y. Hence, since 0

is a regular value of 4~( (f p, y), then (I,p, ~) E4 ’
1(e) and thus

is also dense In ~ x P x Y. This completes the proof .

Remarks. 1) The results of Theorem 8 are valid In the

norm of spaces of preferences (as defined in Chapter 2) as well.

2) Note that there mlght be elements f in ~~~~P X Y  such

that the corresp onding d1(p, y) define a C ’ funct ion , and are not

contained in 17 1(9), since 44f p, y) may be singular. Also,

the boundary solutions to (P) may not be contained in ~ 
-

3) If 1 is a convex preference, Theorem 8 yield. global instead

of local results . In these case , the demand I. a globally defined generi-

cally C ’ function.

4) Sard ’s theorem actually can be usid to prove that the open and

dense set in P x Y where , for an open dense set of prefer ences I

in ? the corresp onding dema nd is locally a well defined C 1 function.

has actually measure one (see [ 1 1).

5) A natural question that remains to be answered Is the nature

of the map that assIgns to a convex preference I the correspondi ng

demand function d(p, y). For instance, in [10) this map Is shown to
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be upper hemi-continuous , with the Hausdorif metric as the topology

given to the space of preferences (closed grap h relations ). The H’

norm Is finer than the Hausdorff metric on the space S since It Is

finer than the norm if s>  n/2 + k, and hence these results of

Debreu will also hold In this context. This remains to be formalized.

Howeve r , S has a much richer structure with the H’ norm

than with the Hausdorff metric , with the H’ norm differentiability

can be defined. Of functions defined on preferences , an

open question is whether the demand function d1(p, y) depends in a

differentiable manner on the underlyi ng preferenc e 1 in S.

,

, 
• V  V V_ _

i 

~~~~~ V~~~~~~ V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

r ~
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I

Chapter 4

PREFERENCES AND EQUILIBRIA

a. ifltroduction

Our aim in this chapte r Is to show an application of the results of

Chapter 2 to the theory of general equilibrium . We shall exte nd results

on finite ness and stability of equilibria of Debreu(12]and Smale [38) to

economies where the agents are represented by their prefe rences and

endowments.

In Debreu ’s theorem [U]an economy Is represented by the C’

demand functions of the agents , satisfying a boundary condItIon; for

almost all initial allocation of commod ities to the ii agents there are

only a finite number of equilibria, which depend continuously on the

allocations . Such an economy is also called ~~g .

In Smale 1 381 the resul ts of Debreu are extended to economies

where the C 1 demand functions of the agents may not be well defined,
2working with C (not necessar ily convex) utllLty functions of the agents

instead; it is proven that for almost all initial allocations and utility

functions of the agents, the “extended” equIlibrIa (which do not coincide

but, In general, contain th. classical equil ibria ) are locally uniqu. and

stabi.. Unde r certain boundary conditions and convexity assumptions

existence of equilIbria ii also proven ( 38].

Tb.. results of[12] and ( 38] rely on different ial topotogy techniques;

in (lZJbasLcally the theorem of SaM , and In [38) Abrah am-Tho m ’s

traesv.rsallty th orem and othe r infinite dimensional dtffsr.ntial

topology t.cbnIques.

_____ _____ - 

~~~~~~~
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In orde r to be abl e to use these types of techniques, one needs

some differentiable structures on the spaces of parameters one works

on. Smale ’s results exte nded those of Debreu, describi ng an economy

by the utilities as well as by the inItial endowments of commodities of

4 the agents --utility functions are elements of linear function spaces,

which have enough structure to work on. in particular , to apply trans -

V versality theory. However, utilities are conside red unsat isfactory as

pr imitive concepts [131, and the results of [38) cannot be translated to

V spaced of preferences unless more structure for spaces of prefe rences

is given. Furthermore, as has been known in economic theory for a

long time, the whole analysis of equilibria and demand behavior ultimately
V rests on the Indifference surfaces ; as pointed out by Smale [38), the

V utility functions are mostly used as a convenient descrIption of the

Indifference sur faces. So it would seem also methodologically more

V adequate to work on spaces of preferences directly.

Since Abraham-Thom’s transversality theorem is avaIlable on some

infinite dimensional manifolds , and we showed in Chapter 2 that spaces

of preferences can be given such structures , one can now take advantage

of the techniques and the results of Debreu [12] and Smale [38) for

economies where the agents are Identified by smooth (not necessarily

V 
convex) preferences and initial endowments. This Is what we inte nd

to do in this section.

extension only valid for spaces of convex smooth preferences of the
results of (12) Is obtained In H. Dierker (16] wIth different techniques.
Di.rk.r states in (16] that in her work th. results of [ 38) cannot be
extended in all generality for the lack of enough structure on the spaces
of preferences. Here we show how the str ucture given In Chapter 2 can

V be used to overcome this , and also to yI.ld generic results about
regularity of .quilibria without such convexity assump tions.

‘
I .~~~ . 

V 

V 
V 

VVV ~~~~I
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We shall now gIve a brief discussion of the problem. Each

prefe rence (with the defInition of Chapter 2) Is , in general , represente d

by an infinite class of utilities. And it Is the “Indifference surfaces ”

of the preferences (or the level surfaces of the ut ilities), rathe r than

the utility function as a whole, which determInes the agent’s demand

behavior. 4 So if an agent Is identified with a preference, rather than

a utility function , a natural question Is whether the results of [38] carry

over . m a  sense, an extension of the results of [lZJ and [38] to prefer-

ences is Intuitively clear: one would expect that the open density of the

class of utilities that yield regular equilibria on an open dense set of

Initial allocations would not be all “used up” in a set of utilities which

represent very few preferences. That thi s is the case for the repres-

entation of spaces of prefe rences given In Chapter 2 , as proved below,

seems to give further support to the intuitive naturality of thi s repres -

entation.

This section is organized as follows: In (b) we prove that the results

of Chapter 2 can be applied to obtain a Ck representation of spaces of

preferences defi ned on the positive cone of R~ , R~
4 , which is

basically an inclusion map. The spaces of preferences are given here

two alternative topologIes : the Whit ney topology and a Sobolev norm.

Since with both these topologies the InclusIon of the spaces of prefe re nces

into utility function spaces is not an open map, one cannot “pull back”

the results of density of regular economies of [38] on utility function

spaces to spaces of pr eferences- -furthe r reason ings are nesded. In

T t wo u t~ ities which rspresent the same prefere nce exhibit the
same demand behavior.

5That is. that the prefere nces induc ed by these open dense sets of
utilities are also an open dense set In the space of preferences , with
the righa topologies.

::V V 

V :. . :  

V , 

V V V
_ _ _ _ _
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Theorem 9 we show that the results of [38] can be extended in this

framework, in view of the representation of the spaces of prefe rences

give n here. Finally. In Part c we discuss very briefly the question of

existence of equilibria in thi s context and necessary conditions for the

local uniqueness of equilibria , which are a partial converse to the

sufficient conditions given in Part b.

b. Gene ricity of Regular Economies

In this section we shall consider as a space of commodities the

positive cone of R~ ,

= (x = (x 1 . . . .  , xL ) E R i with x~ � 0 for each i) .

As a model for the space of preferences we shall take a space of ck, k >2

retractions from ~ to a strictly � ordered one dimensional C submani-

fold I of P wIth ~I (01 and t C~ diffeornorphic to [0, .).

We shall restrIct ourselves to the case of eve rywhere regular

retractions , the analog of in Chapter 2. We next discuss

the topologies on these spaces. The spaces of preferences are endowed

with two different topologies: a Whitney topology and an H5 topology.

t The Whitne y topology on the space of Ck retractions from P to I Is

given for any C diffev~rAorphism ~~: I .., [0,.) by an inclusion map ~

of Ck(P, I) into Ck(P, [0,.)) induced by the composition with the map

~, i. e., V

•: ck(~’,l) ..

is defined by

V 
‘F
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•(f) = ~~o f

since ~ Is C , ~ • f E c
1
~~~. [0,.)). ~ Is an injective map and the

Image of Ck(P~,I) In c~’~(~ ,(o ,.)) Inherits the Whitney topology of

c~ P,[ o ,.)). To define the Whitney topology on C~~P’,[O,.)) one gives

a family of neighborhoods of zero: a neighborhood Nh is defined for

each strictly positive continuous function h: P -, B. as follows:

f E N h ~

sup (If(x11, IIDf(x) II,. . . . llDkf(xliI ) < h(x)

for all x in ~~ (see also [33]). For a given C~ diffeomorphism

I -~~ [0,..) the space of everywhere regular retractions from P
to I is an open subset of the space of all C retracttons from P to I,

with the Whitney topology induced by • described above. We denote

this open set ~~~~~ it will be one model space for the space of prefe r-

ences on P.

Next we study a Sobolev norm on a space of Ck retractions. We

consider a finite measure on ~ , with a C density function ~ such as

~(x) = e ” I x V ,  0< ~~, < 1.6 The space of H’ functions from p~
(with the measure given by ji ) to P. Is defined, as in Chapter 2 , as

the completion under the F I, norm of C ( P ,[0,.)). Here the

U 
~~~~, 

norm Is defined with respect to the measure Induced by ~~. The

space of H’ retractions from ~ to I is similarly given a metric

derived from the II. II, norm, and it becomes a HUbe rt (or Hilbertable)

manifold (by using th. implicit function theorem, see Chapter 2 , Theor em 1).

By Sobolev’s theorem. H 5(P , I) Is Include d in Ck(P,I), if s >

(I. e., the functions in H’(P, I) are k-times continuously differentiable).

V ‘These type of measures are ‘~w~ naturally in certa In Infinite horizon
models such as those of optimal growth, see ChLchLlni~~~ky 151. where
)~ represents a “dIscount factor”.

_ _  
_ _ _  _ _ _



-63-

However , the inclus ion of H8 in is not continuous with the Whitney

topology on c’~(P , r) . For analogous reasons , the subepace ~~ of

everywhere regular retractions in H’(P ,I) will not be open , and will

thus nor form a HUbert manifold itself. However, when the preferences

are restricted to a compact reg on l~ of P, the space of preferenc es

with the above structure, denoted is a Hilbertable manifold

since it coincides with the manifold studied in Chapter 2. That

is all that is needed in order to be able to use Abraham-Thom’s trans-

versality theory to extend the results of [38] to these spaces of prefer-

ences , in orde r to obtain results on genertcity of regular economies.

We need a few technical results. See the Appendix for the defini-
s m

t L O f l O f  H (~l, R ).

LEMMA 5 (Calderon ’s Extension Theorem). Let c�c R~ be

an open bounded set with C boundary. If f E H5(12, Rm), then f

has an extension T E HI(RL , Rm).

LEMMA 6. For any open bounded set ~ with C boundary in

* the restriction map B.: H5(P , R) -, H 5(fl , R) define d bt

R(f) = f I~

is a continuous and open map.

Proof. Note that H5 (fl , R) with the measur e on ~2 coincides

with H’(l l, R) with the Lebesgue measure on ~l , since 12 is compact.

Next , note that If f e H5(P. P.), R(f) € H
5(t2 , B.), and that by definition

of the topolog y on the space ~~~~ R is continuous. From Calderon ’s
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extension theorem (see [26], Theorem 1. 1. 1) , we know that

if f e H’(12, B.), then there exists an extension of f to a map

TE H 5(P,R). Given any g m a  neighborhood of f in H8(12,R) with

the 
~~~~
. 

~~ 
norm , one can find an extension of g to a map ~ in

H’(P, R) such that H T-1115 Is as small as wanted in H’(P,R),

by us ing arguments of C partitions of unity and Calderon extension

theorem .

Therefore , the image under the restriction map of an open neigh-

borhood of an element h in H5(P ,R), h i 12 will be an open neigh-

borhood of h i 12 in H’(12,R) with the induced 
~~~~

. 

~~ 
norm. Thus

the map R is open, which completes the proof.

Let ck(~~, R) be endowed with the Whitney topology, and

let ~ be the C diffeomorphism between I and [0,.) defined above.

Then ~ induces , as seen above, an inclusion denoted ~ of the space

of preferences S~~ Into the space Ck(P, [0,.)). The next lemma

gives a property of thi s Inclusion.

LEMMA 7 (Left Composition of Maps) . ~~~ U be a bounded
n mopen aet ln R , and h :R  ..1 R ~~~~C . Then

wh: Ck(U, Rn) ~

deflnsd bv

wh(f) h . f

~~~
: HS(U,RA) ~

V V V ~~~~~ VØ4~V

V•V ~~~~~~~~~~~~~ -. - ~~V__
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In the following, we assume that in the definition of

~ > L /Z + k and k ~ 2. Let 12 be a bounded region with a smooth

boundary and assum e that b(I fl 12) C ö12. Let I fl Cl be denoted

and let denote the space of everywhere regular retraction..

from Cl onto 112 with the H5 norm. (This space coincides with the

space of preferences Sb discussed in Chapter 2 when 12 S) .

Defi ne maps

V 
12 ~ H12 -~

by

V ~~~ ~~~of

Definition. A map p: A -~~ C~ (X , Y) from a manifold A to the

space of Cr maps from a C manifold X to a C manifold Y ts

called a representation if the evaluation map c v :  A xX  -, Y

given by ev (a ,x) p(a)(x) for a E A  and x E X , i sa  C T map

from AP X X to Y (see El]).

LEMMA 8. •12 -, Ck(C2,R) ~~~~ C !~~ P~ In particular ,

V defines a representation of

Proof. First note that If f E H ’(12,112), then f i s a  C”~ map

by Sobolev ’s inequality, since s is assumed to be strictly larger than

L I Z  + k , so that •12(f) = 4’ .f is indeed in c1
~(?i,R). By Sobolev’s

theorem the Inclusion j

3: H’(Il,I) -~ Ck(Cl , I)



-66.

is continuous . Since ~ is C , the inclusion i

I: H5(12, I) -. C1’(12,R)

given by 1(f) = 4, 3(f) , is also continuous--since it is (locally) linear,

i is also C . Finally, note that by Lemma 7 on left composition of

maps, since the map

12

defined by f -, • f , is given by the composition with the C map q .

then it is also a C map from H’(Cl , I~~) into H ( f l ,R). Since

= • then is C . Thi s completes the proof.

Using these lemmas we shall now show an extension of the results

of [12] and [38) on regular economies. We need some definitions . An

economy is identified by a vector of initial allocations for each of the in

agents, r = (r 1,.. . , r~~) E (P)m and a vector of the preferences of

each agent f = (f i~ •~~•~~
fm) E  (~~)m where S denotes either

or So an economy is a pair

(r ,f) E (P)m X (5,)m

Now let 
~~~~ 

(PE P: Ipi 1) where 1p12 a 
~~~~ (p1)2 As

in (341, the .P.c, ofptatss .9 1, the product space .9~ (P)~~x S~ ,

where m I. the number of agents in the economy. (p~m Is the space

of Initial resources and S
~ 

Is the space of prices . From now on, the

letter p Is used to indicate prices.

V 

_ _ _ _V ~~~~~~~~~~~~~ -~~~~~~~~~~~~~
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An atta inable state of the economy (r , f) is a vector (x ,p) E .9’

satisf ying

E~~~~- E r ~

An attainable state is an extended price equilibrium if , for each I , x1
is in the set ~~~~ = (yEP: p(y) = p(r1)1 and x1 is a critical point of

the restriction

i,p

i. e.,

D~ ~ iIB 1,~ (xi) = 0

For each f = (f 1,.. . , f~~) E (,9)m let 1’ be a map from (~~)m IntO

ck_ 1
(.9,smf

~) defined by

r (~j )(Z• ~) = (~ ~
i~(z1) H  

‘ II

t where u = (u 1,... .u~~
) = ~~.f1,... ~~~~~ Let ~ be the diagonal in

m+l(5) , i.e. ,

V A = [(y 1, . . .  
~~~~~~~~~~~~~ 

E (S)m~~ I y 1 = y2 = ... = ~~~~~~
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PROPOSITION 6. Let Z be the subset of m-tuples of prefe re nces

~~ ~~~~~~~ such that

r (f) : . 9+

is transversal to A . Then Z Is an open and dense set which contains

the rn-topics of preferences which define Ck4 demand functions.

Proof. Let C~ (Pr , B.) be the set

CU E ck(P, R) : Du(x) � 0 for all x in P’j

By Lemma 8 above , the map

~ : 
~~~~~ 

Ck(~~, R)

defined as before by 0 (f) = • f , is C ”. Let 4a: (Ck(P, R)) m into

ck_ 1(.,, (S)m+l ) be defined as In [38], (SectIon 2) by

/ Du (x ) Du
4a (u)(x, p) = 1 1 

,~~ • • ,  
m m

u (,c ) I

thus ~~~~~~ so that

evr = cv = cv (O m Id)
4,

where

.
m

~~14 (.W)
m 

~ .9 ~ (c
k(p , R))m x .9

is defined by

‘
I •7,V~~~

Y
~~~~~~~~~~~~~~~~~~

_
I
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,m~~ Ld((f 1,. . . , f,~ ), x) = (cp f 1,. .. ,q •
~ m’ x)

Thus, since by [38], ProposItion 1, ~ is a C’ representation, evr Is

a C 1 representation also,by Lemma 7. SInce .9 Is compact, by

Theorem 18. 2 of [1] (ope nnes. of tra nsversal Intersecti on) Z is an open set.

We now check that evç ‘b A . Note that for any f In (SW )m,

the map

(Dl) : Tf(Sw) ~

is onto, since ~ is a diffeomo rphisrn , thus, since by [38] (Proposition 1),

the evaluation map ev~, is transversal to A , andsinc e ev
r = ev~,. (,

mX t d),

ev~ 
is also transversal to A . Also, the dimension of .9 is m • L  + f - l ,

the codlinension of A in (S)m h i  
j~ (m+ 1)(t- 1) - 1 = m• L - m + L -2.

Thus

max (0, dim (.9) - codim (S)m41) = 0

Hence, since k~ 2 the conditions of Abraham and Thom ’s trans-

versality theorem ((19. 1 of [1]) are satisfied and thus Z Is also dense

In (,W )m. The remarks afte r Proposition 1 of [38] apply and thus

¶ 
Z contains the set of in-tuples of prefe rences which defi ne

V 

demand functions.

V Let 12 be as In Lemma 3 above. Let be the space of states

such that the commodity coordinates are in 12, i.e., = (12)m xS .~..
V 

By similar arguments to those used In Proposition 1 and by applying

Lemmas 8 and 9 we obtain:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _—

~ 

~~~~~~~~~~~ - _ _ _
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V PROPOSITION 7.

(a) 
~~~ 

be the subset of rn-tunics of ureferences f defined

Si in the space (,HSi)
m, such that F(f) : .9~ -, (8)m~~ ~~

transversal to A . Then Is an open and dense set which contains

the m-tuples of preferences which define C ’ demand functions.

(b) Let ~ be the subset of in-tupies of preferences in (gH )m

such that r f : .9-i ($)
mf 1 

is transversal to A . Then ~ Is a residual

(and hence dense) set in (,H)m.

We now need furthe r definitions . We follow the notation of [38):

For an Initial allocation r, let the set of attainable states relative

to r with a budget condition be defined by:

Zr = ((x, p ) E 9 I  Z z 1 In , p(z1) p(r1) ,  I = 1, ..., rn-1)

contains the classical and extended price equilibria.

Let K be the subset of

K = ((r , s )E  (P)m X S I R E  Zr)

for f in (p)m, define the set:

G

where r is defi ned above.

(r ,f) is called a regular economy if fE  Z and U restricted to
o has r as a regula r value , where U : (p)m 

~ . 9,  (p)m Is the

projection. For a regular economy the equilibria are finite and stable

S 
~~~~~~~~~~~~~~~ V~ V V V ~~V~~ . V .  ~

__
~_V __ VV_

• •• :. V V
V V
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in a global sense [38). The proof of [38] can now be applied , and ~~~~~~~~

obtains the following result:

THEOREM 9. For an open and dense set Zotm..tuDiCs of

preferences in (SW )m, if f = ( f , , .. . ,f
m

).V E i ~~~, (r f) ~~~~~~~~~~~
economy for almost all initial ailocatiofls r. For a residual set Z of

m-tupies of prefe rences in M f = ....... ‘~m~ 
E Z , (r ,f) is

a regula r economy for almost all initial allocations.

Proof. It follows from Propositions 6 and 7 above , and Proposition 4

and Theorem 2 of [38). (Note that the results of Proposition 4 of (381

V are Immediately translated Into this context as referring to the in-tuples

of utilities

u = ( u ,t . . ., urn ) 
~~~~~~~~~~~~~~~~ 

.)

V j
I

I

V V • •

• ~1
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c. Existence of Equilibria and Necessary Conditions for Local

Uniqueness and Stability

We now give a very brief discussion on the problem of existence

of equilibria based on the results of the Appendix of (34]. Recall that

In (38) if ‘~ E U, the set of everywhere regular utilities in C2(P,R)

with the boundary condition (BC) of the Appendix of (38]

and the Monotonicity Hypothesis (MH) (there Is an open halfspace H

In R~ and Du(x) E H for all x In P) are satisfied, then for the

set S of all economIes (r , u) In (P)m 
x ~m such that for each

agent i’ u
1 

satisfies MN and (r., u.) satisfies (BC), there

exists an extended price equilibrium. (See Appendix [38). )

Furthermore, if is the subset of S where for each x E P the

restriction of the second derivative D2 Uj (X) I ker Du.(x) is negative

definite , then for each economy in there exists a classical price

equilibrium.

These results extend In this context as follows:

Let .W be the set of economies (r ,f) wIth 0 (f) E 5, and
• be the set of economies (r ,f) with •(f) E 5D• Then It follows from

the above theorem of ( 38) that for an economy (r, f) j~ it’ there exists

• an extended Drice equilibrium, and for any economy (r , f) In .W~ there

exists a classical price equilIbrium.

V 
- V~~ We end this section with a brief discussion of necessary conditions

V 

V 

V 

V V for th. local uniqueness of equilibria , motivated by discussions in [ 31.

Let f: U-, R’t bea C2 funct ion repre sent ing an .aggrogate

demand of an economy, restricted to an open set U of the price space.

The seros of f represent the equilibr ia. Let x E f4(0). As is well

• 
• 

V V  VV _ V V

~ ~~~~~~~

‘/
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known, if Df(x) is not sing ular , then x is a locally unique equlli-

brium. Also, as discussed in (12], [38] and in Part b above , If the

economy is regular in the sens e discussed in Part b , the set of equilt-

bria is a discrete set, which moves continuously with the parameters

(r , u) which define the economy r representing the initial resources ,

and u the utility functions which determine the aggregate demand f .

These results follow basically from the Implicit function theorem.

However , it is known that the condition that Df(x ) be nonsingula r is

sufficient, but not necessary, for local uniqueness and local stability

of the equilibrium x. Here we discuss simple necessary conditions

for the equilibria to be locally unique, and related sufficient conditIons

for the (nonlocally unique)equlllbria to determine a submanifold of some
V 

codiniens ion which moves continuouej y with the parameters. These

conditions were studied following a remark given by Arrow and Hahn In

[ 3] to the effect that such necessary conditi ons seem hard to obtaIn.

PROPOSITION 8. Let f: U -, V be C2, U and V open subsets

of RN , 0 E V. Then if X E f~ ’(0) s a locally unique zero of f ,

then either Df(x) Is nonsingular or else Df(x) cha n&es rank at every

neighborhood of x, j~~~ , if rank Df(x) = k , k <  n, then not all k +  I

minors of Df can vanish identically in a neighborhood of f .

Example. We first illustrate the conditions by means of an example.

Consider 1: B.3 -, B 3. Assume X E  f~
1(O) and that Df(x) is not

Invertible. Thea either rank Dl = 3 at some point In every neighbor- 
V

hood of x, or else determinant of Df~ 0 in some neighborhood of x.

7Note that if Dl has rank k at x, then Df must h&ve rank at least
k in some neighborhood of x.

V V 1: ~~~~~~~~~~~V~~~~~~ 
~~
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In the first case x Is a locally unique zero by the inverse function

theorem. In the latter case , for the rank of Df not to be constantly

equal to two the nine two by two minors of Df must have a common

zero In every neighborhood of x. Then either Dl has rank 2 at

some point in every neighborhood of x , in which case x is not an

Isolated zero of f , or else all two by two minors vanish Ide nt ically

In some neighborhood U of x. In the latter case , for x to be an

Isolated zero of f the entries of Dl must have a common zero in

every neighborhood of x, because Dl is ~~~ identically zero. Note

that these conditions are necessary but not sufficient for the local

unique ness of a zero . A simple example is given by f: B2 -, R ,
2 2 2  2

V 
f(x, y) = (x -xy , x -xy ). (0 ,0) ts a zero of f. SLnce the rank of

Df at (0 , 0) Is zero , and rank of Df at (x, y) ~ (0 ,0) is not zero,

Df changes rank at every neighbor hood of (0, 0), but (0,0) Is not

an isolated zero of f

Proof. If the rank of Dl is constantly equal to k (k ~ N)

at a neighborhood U of x, then f~~ (0) fl U is an N-k dimensional

subinanifold of U , by a version of the implicit function theorem called

also the constant rank theorem (see [36 ]).

COROLLARY 6. ~~~ x be an equilibrium pf the C2 excess

demand function restrict ed to an open apt U of the prIcp space I: U -, R n.

Then LI x Is a locally unique equilibrium (x E (‘(0)) ,  eIthe r Df is

nonsingular at x or else Dl cha nges rank in every neighborhood of x.

Jff Dl has constant rank k ~ a in some neighborhood U of x, then

the set of equilibr ia in U determines an n-k dimensional *ubinanifold

___________$ ~~V~~~V _
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of U which moves continuously with the parameters (r u), the

initial resources and utility functions of the economy.

Remarks. I .The i nverse function theorem admits a global version

also called the Monodromy type theorem (see [33]). This would allow

an extension of the results of Corollary 2 above to global properties of

equilibria. Other results on global uniqueness of equilibria are

discussed in [ 3].

2. The above discussion describes the structure of the
V 

set of equilibria in some cases: where the derivative (or Jacobian)

of the excess demand function Is invertible and when it has a constant

rank smaller than the dimension of the commodity space. These

results can be studied either locally or globally. The natural next

step is to study what happens to the cases in between these two and

to try to give sufficient conditions that may describe further the set

of equilibria in these other cases. These types of questions are

probably best studied by the use of tools of bifurcation theory.

H!

_ _ _ _ _ _  V _ _ _
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APPENDIX

Definitions and Tool s from Global Analysis
and Differential Topology

Definitions (See for instance [28], [34 ] and [~~s~]).

Let Q C R~ be an open bounded set with C 
• 

boundary. Let Q

be the closure of (~~. Define C~ (C�, Rm) to be the set of functions from
C) to Rm that can be extended to a C~ function on some open set In
containing 0.

If k is a vector of n nonnegative numbers , k = (k1,. . . , k~ ) let

= k1 + k2 + . . .  + k~. If u E C~ (Q, Rm) define D’~(u ) by the
formula

k k1 k
D (u) = (~ IkJ u/a x1 ... ~ x~~ )

and D0u = u .  V

Let ~ E c
lC(o, R m), the space of all k-times continuously differentiable

m kmaps defined on a n eighborhood of ?f with values o~i R . The C norm

II •~ ‘k is defined by

• j~ u 1t~ sup ( I  u(x )~ , . . . , I D~(x)~ ) , O c  Ii i  � k
xEO

For u E C~ (C), Rm) define

U nil ~ I E ~~~~~~ ~• C) Os~k~~ s

Now let H5(0, Rm) be defined as the completion of C”(C) , Rm) under the

• fi . fl norm. These H5 spaces are called Sobolev spaces. Note that

• H°(C), ~ m) = L
2(C), R

m).

Sobolev Theorem

(a) Let s >  n/2 + k. Then H’(C) , Rm) C , R) and the Inclusion
V ii a cont inuous and compact map where has the C’~ topology.

(b) 11 s>  1/2, and £ E H ( f l , Rm) then f/~ 0E H5 1
~
4f2

, where

~~ ds.st.s the bss.bry .1 C ) .
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Manifolds and Tangent Bundles

For the following definitions see for instance (22], [41], [42]and (43].

Let M be a Hausdorff topological space such that each

point in M has a neighborhood homeomorphic to an open subset of

Euclidean space Rd. If , is a homeomorphism1of a connected open

set Uc M onto an open subset of Rd, the pair (U ,ç) Is called a

coordinate system, and p a coordinate map. A differentiable structure

5 of class (1 � k � .‘) on M is a collection of coordinate systems

~~a’ ,~~, 
a E Al which satisf y:

(a) U U = M

(b) p~~. is for all a, ~ in A.
V A d-dimensional differentiable manifold of class C’~ is a pair (M,. ),

where M is second countable , and F is a ~~ differentiable structure

with coordinate systems which map open subsets of M onto open subsets

of Rd.

- A~tanMent vector v at a point rn in M Is ~ ~~~ pping that assigns t~ each function

£ defined and differentiable of class Ck on a neighborhood of m, a real

number v(f) such that if (U,,) is a coordinate system on a neighborhoo d

of m, there exists a list of real numbers (a,. . . , a~ ) (depend ing on

such that

d
v(f) = a1 br1 ,(zn)

where r 1. .. r~ is the canonic al coordinate system on R d. The space

of all tan gent vectors at m E M Is denoted ‘I’Mm and called the tangent

space of M at m. TMm turns out to be d-dimensional , with a basis

t a/a xj I J  . Let M be a C manifold with differentiable structure .~~

Let
T(M) . U TM

_______________ 
rnEM

continuous one to one onto map with a continuous inv•rse.
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There is a natural projection

II: T(M) -‘ M , 11(v) = m if v € TMm

Let (U ,p ) E  5, with coordinate functions = r~ . p ,  i = l , . . . ,d.

— - I  2dDefine p : Ii (U) -, R by

~~(v) = (x1(II (v), . . . , z~(fl(v)) , dx1(v) , . .

-1 dfor all v E 11 (U). p is one to one onto an open subset of R . Then

it can be checked that

(1) if (U ,p) and (V , $ ) E 3  the n is C0 .

(2) the collection (~~~~(W); W open in RZd, (U ,9) E sj forms

a basis for a topology on T(M) which makes T(M) into a 2d -dimensional

C manifold. T(M) with this differentiable structure is called the

tangent bundle of M. Any point of T(M) can be written as a pair (m, v),

were m E M  and V E T M m~
V 

A C’ map f : M- . N is an embeddinVg if .for all x E M

T~~~: T~ M -, Tf(x)N is one-one , and f maps M homeomorphically onto

its image. Let N be a C
0 submanifold of M. A tubular neighborhood

of N in M isa  tuple (~ , W, f) where g is a C vector bundle, with

projection p, fi ber E and base apace N, Wc E is an open neighborhood

P of the zero section Z(N )  of this bundle, and f :  W -~ M is a C”

embedding onto an open neighborhood of N such that f ‘Z = id N .  A

V tubular neighborhood of N can be descrLbed by saying that there is a

neighborhood of N in which N “looks ]ike the zero section of a vector

bundl e.” (See for instance [Z2~).

A map f : X - ~ Y is homotopic to a rnap g : X- e Y if there exists a

• continuous map
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such that

Ø(x ,O) = f(x) and Ø(x , 1) = g(x)

for all x E Y .  
-

A topological space X is contractible when the identity map

id~ 
: X -~~ X is hornotopic to any constant map C~ : X -, x, x E X.

Manifolds with boundary (see [22 )) .

A half space of R~ is a subset of the form

H = ( X E R n I x ( x ) ~~~~~o)

wher e X : R’~-, R is a linear map. If X n O  then H =  R’1, otherwise

H is called a proper half space. If H is proper the boundary of H is

the set à H  = kerne l X , which is a linear subspace of dimension n-i.

V V~~~ V V~~~~~~ 
H R~, ~ H = ~ .~ 

We now e~~and the definition of chart on a space

M to mean a map $ : U-, R’~ which maps the open set Uc M honieo-

morphically onto an open subset of a half space in R~ , this includes all

charts defined before , since R” is itself a ha lfspace. Using this definition

of chart one extends the meaning of a Cr differentiable structure for M to rnani-

fold s with boundary. Similarly one define s a subma nifold of a manifold with
V 

boundary (a.. [22]) .

aM (the ~~undarv of M) is defined as follows x ~ ~M if

* € $
1(aH), for some chart 

~~~
, where H is a proper halfspac.. Thi s

condition is independent of the chart (see (22)) .

A is a neat submanif o1~ of M if it is a subma nilold and

a A ’ A f l a M , and A(h M at ~A.
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If Mc Rm and Nc R’~ are manifolds with boundary, a map

£ : M -, N is in H 5(M, N) when there exists an H’ map

U-i V

where tic Rm is an open set containing M, V is an open manifold

containing N, and g/M = f.

Bundles (see for instance (42] and [41).

A bundle consists of a bundle space B, a base sp X, a

continuous onto map p :  B -i X called a fibration and a space Y called

the fibe r. In addition there is a group C of homeomorphism of Y and

for each * E X a family of homeomorphisms G~ of Y into such

that

(i) ~~~ , ~~~
‘ E G~~ s ~~

1 
~~~

‘ E C and

(Ii ) ~~E G X, g E G ~~ ~ g E  G,, .

(iii) A family (v~) (called coordinate neighborhoods) of open sets

covering X such that for each j  there is a homeomorphism O3
:V~ ~~Y-.p~~ (Y)

(cafl.d a coordinate function) and

P ø j(x, T ) = x  for x E V ~~ y E T

(~
) if th. map ~ :Y- . p4 (x) ts defined by •, x(y) =~~~(x,y)

then for each pair i,j  i n S  and each x ~ V~ fl V~ the bomeomorphism

ç ~~~~ i, x Y.i Y coincides with the op.rationf~f an element of 0 and

for each i,j  the map gj1 : V~ fl V
i

-. C defined by gjj(x) = ~j’~ ø~~~
V is continuous.

Ii 

_ _ _ _ _
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Let M be an n-dimensional manifold of class r . A foliated

structure or foliation S of class r and of codj ineusion p is defined by
giving a system of charts which are honieomorphisrns of class r of
open sets U 1 of R~ over open sets of th. manifold V satisfying the
following properties:

( 1) U1 h1(U.) cover M.

(2) The changes of coordinates or charts h ’ h~ are local homeo-
morphisms of R’~ of class r which are locally of the form

1 1h(x ,y) = (x ,y

• ~I x ~ = h 1(x)

V y = h2(x,y)

• for a l l z i n M, where

z = (x, y) = (x1,.  . . , xi,, y1, .. . ,

A vector bundle is a bund le in which the fibe r is a real vector
• space and C is a group of linear tran sforma tion. ,.

A cross -section of a bundle is a continuous map f :  X -. B such that
pf( z )=x for each , C E X .

Let ,
~ 

:X-i X1 beacon tinuou s map, and let (B ’, X 1, Y,p) bea
bundl e with group 0. The indu ced or puU back bundl e can be defined
having base space X, fiber Y, group C and bundle space
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1The coordinate neighborhoods are the inverse image of those of B :

V~ = fl~~ V~’ the coordinate transformation s are given by

gjj(x) = ~,j (n(x))~ x E V~ ~

It can be seen that this construction defines a unique bundle.

Let M be an rn-manifold , m ç M .  Let Y ~ Rm,

and let L be the group of linear transformations

of Rm. Let T(M) n~~M T (M). Then there is a vector bundle

(T(M), M, R’~, p) with group structure L whore p :  T(M) -, M assigns

to each tangent vector its origin, called the tangent bundle. The system

of cooi dinates constructed for this bundle ia made up of maps $j
’:U~ x R’~-i T(M)

defined by $ ‘(u ,y) = ~j ($j (u),y) , where (U~,$J J are a system of

coordinates charts for the manifold M, and where is the coordinate

function (see [42), pp. 15).

Let M be a compa ct manifold of dimension xi. Let E be a vector

bundle of M and let IIM : E -, M denote the canonical pro jection. Then

for each m E M, flj (m) ~ R~~ for some m and there exists a finite open cover

• (UJ I of M such that each U~ is a cha rt of M and fl~~ (U1) 
~ U~ x

for each i. Such a cover is called a trivialization (Gee (42)). A section

ofa vector bundle E of M i s a m a p  h :  M-, E such that h idM.

In view of the above, a secti on of E can locally be thought of as a

map from R’1 -, Rm, where xi is the dimension of M. Oxie can thus put a

Hu bert structure locally on the space of sections of E whose derivatives

up to order a are in L2 (denoted }l’(E))as defined above. In view of

_  

-~~~ •~~~~~~~~~_
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the compactness of M one can check that the definition of H’(E) is

independent of the trivialization for s > n/2 , see £29]. However , the

filbert space structure depends on the ch&ce of charts , and although the

space H’(E) is well defi ned, the norms may vary with the choice of

charts, ~~. e . ,  they are not canonical ) so that H’(E) is called a Hilbert manifold

or Hilbertible space , i. e., a space on which some complete inner product

exists.

The Sobolcv theorem has an analog for H8(E). Let M and N

be compact manifolds. Let n be the dimension of M, and I the

dimension of N. We say that £ E H’(M, N) if for any ni E M and

any chart (U ,ç) containing m and any chart (V , $) of 1(m) in N, the

map $ . f .q , 1 :cp(U) -i R1 is in H’(9(U), R1). If s> n / Z  this can be

shown to be a well defined notion independent of the choice of charts (See

for instance [28); (29)).

Ma rtifold of snaps. Let M and N be co np*ct Riemannian manifolds, i. e. ,

manifolds with a compatibl. metric, defined on the tangent spaces [44).

We now sketch the definition of a manifold structure for H ( M I N)

(see for instance [28], [29] and (34]).

This is done by first finding charts for H ( M , N) and then. showing

that th. changes of charts are well defined (i. e., map Into the right

spaces).

Let f E H5(M, N). We first define T
1 H

5(M, N), the tan1ent space

at £ of H ( M ,  N) to be th . linear space of section s X from M to TN

(TN can be identifie d with the vector bundle f (TN), the “pull back” of

TN by f :  M .s N, which is a bundle over M, as defined above) which

• satisfy UN SX  = f , I. e. , •Y i s a  section that maps m E M  into a vector

v which Is In the tangent space of n = f(m).

So formall y

T1H’(M, N) a (X (H’(M, TN) : flN I X f )



P~ 
— 5• there is a map denoted CX~~e that maps the linear space T1 H (M, N)

onto a neighborhood of £ in H5(M, N), taking 0 to 1, and thus can

V 
define a chart in. H5(M, N). We sketch the definition of this map.

if V
P 

E T~ N~ there is a unique geodesic ~~ through p whose

I tangent vector at p is Vb~ 
Then exp~(v ) = u~ (1). In general,

V Il- p 
p

• exP~ is a diffeomorp hism from some neighborhood of 0 In T~ N onto

I a neighborhood of p In N. If N is compact , exp~, Is defined over

all of T~ N. Thi s map cw be extended to a map exp : TN -, N such that

if V
g E TN then exP(vg) = O*Pp(Vg)~ We now define ~~~ 1:T1 H

5(M, N)

~ H’(M, N) by X -~~ exp • X. It can be seen that 
~~~ 

maps the linear

space T1 H
5(M, N) onto a nei ghborhood of £ in H 8(M, N) taking 0 to

I and hence it gives a chart for H5(M, N) at I.

It can be S C C A  that inspite of the use of the geodosics ar~ for the

definition of ~~~~~~~~~, 
the structure is independent o.~ the metric, and also 

that ~~~heV ~ hangea o1 charts ~ r.e weJLdnf1~~ ds~ d smQotL ~ see. ~ 8]. and. [.Z9]).

T ra nsversa lity (See , for Instance [1])

Let M 1 and M 2 be C 1 submanifolds of a C 1 manifold X , and

x E X a point. We say M 1 and M2 are transversal at x, in symbols,

M 1 f 1 M 2 at x, tf and only tf ei therx 4M 1 flM 2 or x E M 1flM 2 and

T X T M  +T M . We say M is tra nversal to M • M (bM If and

only if 
~~~ 

vfi M 2 
at all x in X . Let X and Y be C 1 manifolds and

f: X -, 1 a C 1 map, and M C Y a suisnanifold, X and Y finite dimensional.

We say that f is transversal to M at a point x In X, in symbols ,

f4~M at x Lf and only lf wh.re y = f( x )l  eithe r y~~ M or Y E  M and

V the (nv rse Imag. of (T
~

f)(T
~X) contains a complement to T~ M in T,Y.

We say f is transversal to M , in. symbols f 4~M if and only if f (hM

at z, for all X E X .

- V V • _  • ~~~~~~~~ • V V
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Local and global properties of spaces of preferences are studied , with
applications to general equilibrium, utility and demand analysis. Spaces of
smooth, not necessar ily convex or Increasing pref.renc.s are proven to be
representabi. as differentiable Hu bert manifolds. These structure s of spaces
of prefer ences are then used to extend results on the regularity of equilibria
to economies where th. agents are described by their preferences and endowments.
Subspaces of preferences which giv, foliations of the cosmodity space and
also subspaces of convex and increasing smooth preferences are shown to be
submanifolds. Topological prop erties of these ..nifolds , and local and global
properties of the demands and th. utilities of th. agents in relation to the
underlying pr.f.ren c.s are also studied.
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